为什么我们要研究复杂系统呢?或者说,我们能从复杂系统研究中得到什么呢?
第一,一些原来让我们困惑不解的现象,可以通过复杂系统研究获得让人信服的解释。例如,在交通领域曾经有两个长期没有得到解释的著名现象:一个是“幽灵堵车”,指的是在无事故、无施工等明显原因下,道路突然出现拥堵又自然消散的现象[30];另一个是“布雷斯悖论”,是指通过增加一条新道路或扩大某条道路的容量来提升交通容量,反而可能导致整个网络的通行效率下降、拥堵加剧[31]。这两个现象现在已经在复杂系统研究的框架下得到了很好的解释:前者是由启停波驱动的一种典型的自组织临界行为[32,33],后者则源于人类决策和交通网络的双重复杂性[34,35]。又如,在金融市场中出现的波动聚集[36]与市场崩盘[37],在有效市场假说的框架下难以解释,但却可以通过引入复杂金融网络和风险的传播动力学,得到很好的解释[38-41]。
第二,可以利用复杂系统研究的结论进行更好的系统设计和干预并获得实践收益。例如,当我们充分理解布雷斯悖论背后的机制后,我们就可以精确定位导致布雷斯悖论的道路并在满足特定条件的前提下关闭这些道路[42],或者将少量道路变成潮汐路[43,44],从而在不新建道路的情况提升整个交通网络的吞吐量并降低拥塞率。又如,当我们明白金融网络中的相互作用可能导致风险迅速放大甚至市场崩盘,我们就要观察和留意这些相互作用(例如银行间的隔夜拆借)中是否存在异常,并且推动金融风控从个体风险转向系统风险,把金融机构之间的关联度纳入检测和监管的对象,而非仅仅关注单一机构的资本充足率[45,46]。类似的例子还很多,比如复杂系统研究推动电力网格设计从 “组件冗余” 转向 “网络韧性”,包括增加枢纽变电站的备用电源,实时监测负荷分布并预警等,从而显著降低了全球大停电的频率[47-49]。又如在生态保护中把关注点从濒危物种扩大到枢纽物种,比如热带雨林中的蜜蜂、蝙蝠和淡水生态系统中的虾,并且特别关注生态系统的连通性,构建连接碎片化栖息地的生态走廊等。中国大熊猫国家公园通过构建生态廊道,连接了原本孤立的大熊猫栖息地,促进了不同种群的基因交流,显著提升了野生大熊猫种群数量和大熊猫的生存韧性[50-52]。
第三,一些在复杂系统研究中发展起来的概念、方法和理论,已经在很多其他科学研究领域发挥了重要作用。最为典型的例子就是复杂网络[53],它的提出和早期成长源于复杂性研究,而现在已经成为了生命科学、生态学、社会学、管理学、计算机科学、物理学等领域高度频繁使用的概念和工具[54,55]。其他如混沌理论、分形理论、自组织理论等,都在非常广泛的领域中找到了应用[56]。
[30] J. Treiterer, J. A. Myers, The hysteresis phenomenon in traffic flow, in Proceedings of the 6th International Symposium on Transportation and Traffic Theory (Elsevier, 1974).
[31] D. Braess, Uber ein Paradixon aus der Verkehrsplanung, Unternehmensforschung 12 (1968) 258-268.
[32] D. Chowdhury, L. Santen, A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Physics Reports 329 (2000) 199-329.
[33] D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics 73 (2001) 1067-1141.
[34] A. Rapoport, T. Kugler, S. Dugar, E. J. Gisches, Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox, Games and Economic Behavior 65 (2009) 538-571.
[35] G. Gounaris, E. Katifori, Braess’s paradox analog in physical networks of optimal exploration, Physical Review Letters 133 (2024) 067401.
[36] R. Cont, Volatility clustering in financial markets: empirical facts and agent-based models, in Long memory in economics (Springer, 2007), pp. 289-309.
[37] A. Johansen, D. Sornette, Shocks, crashes and bubbles in financial market, Brussels Economic Review 53 (2010) 201-253.
[38] A. G. Haldane, R. M. May, Systemic risk in banking ecosystems, Nature 469 (2011) 351-355.
[39] M. Elliott, B. Golub, M. O. Jackson, Financial networks and contagion, American Economic Review 104 (2014) 3115-3153.
[40] D. Acemoglu, A. Ozdaglar, A. Tahbaz-Salehi, Systemic risk and stability in financial networks, American Economic Review 105 (2015) 564-608.
[41] M. Bardoscia, S. Battiston, F. Caccioli, G. Caldarelli, Pathways towards instability in financial networks, Nature Communications 8 (2017) 14416.
[42] J. Ma, D. Li, L. Cheng, X. Lou, C. Sun, W. Tang, Link restriction: Methods of testing and avoiding braess paradox in networks considering traffic demands, Journal of Transportation Engineering, Part A: Systems 144 (2018) 04017076.
[43] K. Ampountolas K, J. A. Dos Santos, R. C. Carlson, Motorway tidal flow lane control, IEEE Transactions on Intelligent Transportation Systems 21 (2019) 1687-1696.
[44] S. Striewski, I. Thomsen, S. Tomforde, Adaptive Approaches for Tidal-Flow Lanes in Urban-Road Networks, Future Transportation 2 (2022) 567-588.
[45] S. Battiston, M. Puliga, R. Kaushik, P. Tasca, G. Caldarelli, Debtrank: Too central to fail? financial networks, the fed and systemic risk, Scientific Reports 2 (2012) 541.
[46] T. Squartini, I. Van Lelyveld, D. Garlaschelli, Early-warning signals of topological collapse in interbank networks, Scientific Reports 3 (2013) 3357.
[47] G. A. Pagani, M. Aiello, The power grid as a complex network: a survey, Physica A: Statistical Mechanics and its Applications 392 (2013) 2688-2700.
[48] A. M. Amani, M. Jalili, Power grids as complex networks: Resilience and reliability analysis, IEEE Access 9 (2021) 119010-119031.
[49] X. Liu, D. Li, M. Ma, B. K. Szymanski, H. E. Stanley, J. Gao, Network resilience, Physics Reports 971 (2022) 1-108.
[50] J. M. Montoya, S. L. Pimm, R. V. Solé, Ecological networks and their fragility, Nature 442 (2006) 259-264.
[51] P. Landi, H. O. Minoarivelo, A. Brännström, C. Hui, U. Dieckmann, Complexity and stability of ecological networks: A review of the theory, Population Ecology 60 (2018) 319-345.
[52] H. He, X. Yu, H. Yu, Z. Ma, Y. Luo, T. Liu, Z. Rong, J. Xu, D. Chen, P. Li, F. Yuan, Suitable habitat evaluation and ecological security pattern optimization for the ecological restoration of Giant Panda habitat based on nonstationary factors and MCR model, Ecological Modelling 494 (2024) 110760.
[53] M. Mitchell, Complex systems: Network thinking, Artificial Intelligence 170 (2006) 1194-1212.
[54] A.-L. Barabási, Network science (Cambridge University Press, 2016).
[55] M. E. J. Newman, Networks (Oxford University Press, 2018).
[56] A. F. Siegenfeld, Y. Bar-Yam, An introduction to complex systems science and its applications, Complexity (2020) 6105872.
转载本文请联系原作者获取授权,同时请注明本文来自周涛科学网博客。
链接地址:https://wap.sciencenet.cn/blog-3075-1504841.html?mobile=1
收藏