迄今为止,没有关于“复杂系统”的标准定义,但学术界广泛认可的复杂系统,一般是指由大量相互作用、相互关联的个体(或组分) 构成,且整体行为远超个体简单叠加的系统[1-3]。复杂系统既不是如机械钟表一般组分间互动关系单一且可精准预测的“简单系统”也不是如如掷骰子一般结果完全无法预测的“随机系统”,而是介于两者之间的系统,广泛存在于经济[4,5]、社会[6,7]、生物[8,9]等领域中。
复杂系统具有自组织、涌现性、非线性、适应性、开放性等核心特征。(1)自组织.—系统无需“中央指挥官”,仅通过组分之间的局部、简单的相互作用规则,就能自发形成全局的统计规律或有序结构[10],例如在鸟群和鱼群中,每只鸟或鱼只需要遵循一些简单的局部规则,整个群体就可以形成有序的群集运动[11]。(2)涌现性.—系统整体会出现个体层面没有的新属性、新行为,且无法通过分析单个组分推导出来[12]。例如单只蚂蚁只会寻找食物、分泌信息素等简单行为,但当数万只蚂蚁聚集在一起时,会涌现出集体筑巢和分工协作等个体不具备的智能行为[13];又如单个神经元只能接收和传递电信号,但千亿个神经元通过突触连接互动,会涌现出无法通过分析单个神经元解释的高级认知功能[14]。(3)非线性.—组分之间复杂的正反馈和负反馈作用,使得系统对外界刺激的响应是非线性的,有可能输入上小的差异导致最终结果巨大的差别,也有可能输入上很大的差异却导致差不多的结果[15]。我们耳熟能详的“蝴蝶效应”——南美洲一只蝴蝶扇动翅膀,可能通过大气环流的非线性互动,最终在北美洲引发一场飓风——就是典型的非线性效应[16]。(4)适应性.—系统整体或者系统的组分能通过“学习、反馈”感知环境变化,并据此调整自身的动力学或者组分之间的互动方式,从而适应环境,尽可能提高适应度[17]。在某些场景中,系统还可以通过和环境的相互作用改变环境本身,而变化后的环境对系统的影响亦发生改变,从而导致更复杂和难以预测的行为[18,19]。一个典型的例子就是生态系统,其中物种会因为环境的变化(例如气候变化或者外界生物入侵)以及其他物种数量和行为的变化而改变自己捕食、躲避、繁殖等行为,尽可能提高自己生存和繁殖的能力[20,21]。(5)开放性.—系统不是封闭孤立的,而是持续与外界交换物质、能量和信息,并基于此维系有序(低熵)的结构,一旦切断系统与外界的交互,系统会逐渐崩溃[22]。例如生命体需要从环境摄入食物且排出废物,若切断这些交换,则死亡为期不远[23];又如城市作为一个整体,需要从外部输入能源、水、粮食等,一旦切断这些供应,城市将会迅速瘫痪[24]。
复杂系统之所以具有以上特征,或者说复杂系统之所以复杂,既可能来源于系统组分自身动力学的复杂性[25,26],又可能来源于组分之间的相互作用[27,28],更多时候这两者都有贡献[29]。
[1] M. E. J. Newman, Complex systems: A survey, American Journal of Physics 79 (2011) 800-810.
[2] J. Ladyman, J. Lambert, K. Wiesner, What is a complex system?, European Journal for Philosophy of Science, 3 (2013) 33-67.
[3] Y. Bar-Yam, Dynamics of Complex Systems (CRC Press, 2019).
[4] R. N. Mantegna, H. E. Stanley, Introduction to econophysics: correlations and complexity in finance (Cambridge University Press, 1999).
[5] C. A. Hidalgo, Economic complexity theory and applications, Nature Reviews Physics 3 (2021) 92-113.
[6] J. Gao, Y.-C. Zhang, T. Zhou, Computational socioeconomics, Physics Reports 817 (2019) 1-104.
[7] M. Jusup, P. Holme, K. Kanazawa, M. Takayasu, I. Romic, Z. Wang, S. Gecek, T. Lipic, B. Podobnik, L. Wang, W. Luo, T. Klanjscek, J. Fan, S. Boccaletti, M. Perc, Social Physics, Physics Reports 948 (2022) 1-148.
[8] C. Adami, C. Ofria, T. C. Collier, Evolution of biological complexity, PNAS 97 (2000) 4463-4468.
[9] A.-L. Barabasi, Z. N. Oltvai, Network biology: Understanding the cell's functional organization, Nature Reviews Genetics, 5 (2004) 101-113.
[10] P. Bak, How nature works: The science of self-organized criticality (Springer, 2013).
[11] T. Vicsek, A. Zafeiris, Collective motion, Physics Reports 517 (2012) 71-140.
[12] J. H. Holland, Emergence: From chaos to order (Oxford University Press, 2000).
[13] S. Johnson, Emergence: The connected lives of ants, brains, cities, and software (Simon and Schuster, 2002).
[14] R. Wang, P. Lin, M. Liu, Y. Wu, T. Zhou, C.-S. Zhou, Hierarchical connectome modes and critical state jointly maximize human brain functional diversity, Physical Review Letters 123 (2019) 038301.
[15] C. S. Bertuglia, F. Vaio, Nonlinearity, chaos, and complexity: The dynamics of natural and social systems, (Oxford University Press, 2005).
[16] E. Lorenz, Predictability: Does the flap of a butterfly's wing in Brazil set off a tornado in Texas?, A presentation before the American Association for the Advancement of Science on December 29, 1972.
[17] J. H. Holland, Studying complex adaptive systems, Journal of Systems Science and Complexity, 19 (2006) 1-8.
[18] L. Lam, Active walker models for complex systems, Chaos, Solitons & Fractals, 6 (1995) 267-285.
[19] F. Schweitzer, Brownian agents and active particles: collective dynamics in the natural and social sciences (Springer, 2003).
[20] A. Traveset, D. M. Richardson, Mutualistic interactions and biological invasions, Annual Review of Ecology, Evolution, and Systematics, 45 (2014) 89-113.
[21] F. Morone, G. Del Ferraro, H. A. Makse, The k-core as a predictor of structural collapse in mutualistic ecosystems, Nature Physics 15 (2019) 95-102.
[22] I. Prigogine, Time, structure, and fluctuations, Science 201 (1978) 777-785.
[23] K. Kaneko, Life: An introduction to complex systems biology (Springer, 2006).
[24] Y. Zhang, Y. Lin, G. Zheng, Y. Liu, N. Sukiennik, F. Xu, Y. Xu, F. Lu, Q. Wang, Y. Lai, L. Tian, N. Li, D. Fang, F. Wang, T. Zhou, Y. Li, Y. Zheng, Z. Wu, H. Guo, MetaCity: Data-driven sustainable development of complex cities, The Innovation 6 (2025) 100775.
[25] E. Ott, Chaos in dynamical systems (Cambridge University Press, 2002).
[26] A.-L. Barabasi, The origin of bursts and heavy tails in human dynamics, Nature 435 (2005) 207-211.
[27] S. A. Kauffman, The origins of order: Self-organization and selection in evolution, in Spin glasses and biology (World Scientific Publishing, 1992), pp. 61-100.
[28] P. Ball, Critical mass: How one thing leads to another (Farrar, Straus and Giroux, 2006).
[29] A.-L. Barabasi, The architecture of complexity, IEEE Control Systems Magazine 27 (2007) 33-42.
转载本文请联系原作者获取授权,同时请注明本文来自周涛科学网博客。
链接地址:https://wap.sciencenet.cn/blog-3075-1504707.html?mobile=1
收藏