
科学家创造出了一种像金属一样传导的超薄聚合物
诸平
The efficient charge transport in multilayer-stacked 2D conducting polymers. Credit: NIMTE
据中国科学院(Chinese Academy of Sciences)2025年2月6日提供的消息,科学家创造出了一种像金属一样传导的超薄聚合物(Scientists Just Created an Ultra-Thin Polymer That Conducts Like Metal)。
一个研究小组开发了一种革命性的二维聚苯胺(two-dimensional polyaniline简称2DPANI)晶体,克服了聚合物中主要的导电性限制。其独特的多层结构允许金属电荷传输,为电子和材料科学的新应用奠定了基础。{A research team has developed a revolutionary two-dimensional polyaniline (2DPANI) crystal that overcomes major conductivity limitations in polymers. Its unique multilayered structure allows metallic charge transport, setting the stage for new applications}
一个国际研究小组成功地创造了一种多层二维聚苯胺(2DPANI)晶体,表现出优异的导电性和以金属样方式传输电荷的独特能力。他们的研究结果发表在2025年2月5日的《自然》(Nature)杂志——Tao Zhang, Shu Chen, Petko St. Petkov, Peng Zhang, Haoyuan Qi, Nguyen Ngan Nguyen, Wenjie Zhang, Jiho Yoon, Peining Li, Thomas Brumme, Alexey Alfonsov, Zhongquan Liao, Mike Hambsch, Shunqi Xu, Lars Mester, Vladislav Kataev, Bernd Büchner, Stefan C. B. Mannsfeld, Ehrenfried Zschech, Stuart S. P. Parkin, Ute Kaiser, Thomas Heine, Renhao Dong, Rainer Hillenbrand and Xinliang Feng. Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature, 2025. DOI: 10.1038/s41586-024-08387-9. Published: 05 February 2025. https://www.nature.com/articles/s41586-024-08387-9
参与此项研究的有来自德国德累斯顿工业大学{Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany; Chair of Theoretical Chemistry, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, Dresden, Germany; Institute for Solid State and Materials Physics and Würzburg-Dresden, Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden, Germany}、中国科学院宁波材料技术与工程研究所(Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China)、西班牙多诺斯蒂亚-圣塞巴斯蒂安的CIC nanoGUNE BRTA(CIC nanoGUNE BRTA, Donostia-San Sebastián, Spain)、保加利亚索非亚大学(University of Sofia, Faculty of Chemistry and Pharmacy, Sofia, Bulgaria)、德国乌尔姆大学(Central Facility of Materials Science Electron Microscopy, Universität Ulm, Ulm, Germany)、德国马普微观结构物理研究所{Max Planck Institute of Microstructure Physics, Halle (Saale), Germany}、中国武汉华中科技大学(Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China)、德国德累斯顿的莱布尼茨固体和材料研究所(Leibniz Institute for Solid State and Materials Research Dresden, Dresden, Germany)、德国弗劳恩霍夫陶瓷技术与系统研究所{Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, Germany}、德国戈利茨的德累斯顿-罗森多夫亥姆霍兹中心,{Helmholtz-Zentrum Dresden-Rossendorf, Center for Advanced Systems Understanding (CASUS), Görlitz, Germany}、韩国首尔延世大学(Department of Chemistry and IBS Center for Nanomedicine, Yonsei University eodaemun-gu, Seoul, Republic of Korea)、中国香港大学(Department of Chemistry, The University of Hong Kong, Hong Kong, China)、中国深圳生命科学与能源材料创新研究所{Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China}、西班牙多诺斯蒂亚-圣塞巴斯蒂安BRTA和EHU/UPV联合的CIC nanoGUNE(CIC nanoGUNE BRTA and EHU/UPV, Donostia-San Sebastián, Spain)以及西班牙毕尔巴鄂的巴斯克科学基金会(IKERBASQUE, Basque Foundation for Science, Bilbao, Spain)的研究人员。
导电聚合物如聚苯胺(polyaniline)、聚噻吩(polythiophene)和聚吡咯(polypyrrole)因其导电性而受到重视,并为传统半导体和金属提供了有前途的替代品。它们重量轻,灵活,成本效益高,使它们对各种技术应用具有吸引力。尽管它们具有潜力,但一个主要的挑战是如何实现有效的电荷传输,特别是在聚合物链之间。这一限制限制了它们的整体性能,并减缓了它们在实际应用中的采用。
合成二维聚苯胺的新方法(A Novel Approach to 2DPANI Synthesis)
为了应对这一挑战,来自中国科学院(CAS)宁波材料技术与工程研究所(Ningbo Institute of Materials Technology and Engineering简称NIMTE)、德国德累斯顿工业大学(Technische Universität Dresden简称TU Dresden, Dresden, Germany)、德国马克斯普朗克微观结构物理研究所(Max Planck Institute of Microstructure Physics, Halle (Saale), Germany)和西班牙CIC nanoGUNE BRTA的研究人员利用阴离子表面活性剂单层在水面上对苯胺进行拓扑定向二维聚合,开发了一种新型的2DPANI晶体(2DPANI crystal)。
2DPANI晶体的畴尺寸为130 ~ 160平方微米(130 ~ 160 μm2),厚度为数十到数百纳米。它具有层间距为3.59埃(3.59 Å)的柱状π阵列和菱形晶格(rhombohedral lattices),这是一种由相互交织的聚苯胺链形成的特殊晶体结构。电子自旋共振光谱(electron spin resonance spectroscopy)和第一性原理计算(first-principles calculations)证实,这种结构有利于强平面内共轭和层间电子耦合。
令人印象深刻的电导率和电荷传输(Impressive Conductivity and Charge Transport)
合成的导电聚合物表现出德鲁德型电导率(Drude-type conductivity),外推的直流电导率约为200 S/cm。还观察到各向异性电荷输运,面外和面内电导率分别约为7 S/cm和约为16 S/cm。
值得注意的是,垂直器件在较低温度下表现出更高的导电性,这是金属面外输运的特征。
导电聚合物研究的这一进展解决了由结构有序和电子耦合不足引起的有限电荷传输问题。该研究还提供了对三维金属导电性的见解,为电极、电磁屏蔽和传感器的发展开辟了新的途径。
本研究得到了中国国家自然科学基金{National Natural Science Foundation of China (grant no. 52322316); National Natural Science Foundation of China (grant nos. 22272092 and 22472085); National Natural Science Foundation of China (grant nos. 61988102, 6242200987 and 62301319); National Natural Science Foundation of China (grant no. 62075070)}、中国浙江省优秀青年基金{Excellent Youth Foundation of Zhejiang Province of China (grant no. RG25E030003)}、中国上海市科学技术委员会{Science and Technology Commission of Shanghai Municipality (grant nos. 23010503400 and 23ZR1443500)}、欧盟石墨烯旗舰(石墨烯核心3){EU Graphene Flagship (GrapheneCore3, grant no. 881603)}、欧洲研究理事会{ERC starting grant (FC2DMOF, grant no. 852909), ERC Consolidator grant (no. T2DCP)}、德国研究基金会{Deutsche Forschungsgemeinschaft within CRC 1415 (Chemistry of Synthetic Two-Dimensional Materials, grant no. 417590517), as well as the Center of Advancing Electronics Dresden (cfaed)}、西班牙MICIU/AEI(Grant CEX2020-001038-M funded by the Spanish MICIU/AEI/10.13039/501100011033 and Grants RTI2018-094830-B-I00 and PID2021-123949OB-I00 funded by the Spanish MICIU/AEI/10.13039/501100011033 and by ERDF/EU)以及中国湖北光学基础研究中心,WNLO创新基金(Hubei Optical Fundamental Research Center, and the Innovation Fund of WNLO)等组织的资助。
上述介绍仅供参考,欲了解更多信息敬请注意浏览原文和相关报道。
Linear conducting polymers show ballistic transport, imposed by mobile carriers moving along the polymer chains1,2, whereas conductance in the extended dimension, that is, between polymer strands or layers, remains weak due to the lack of intermolecular ordering and electronic coupling3,4,5. Here we report a multilayer-stacked two-dimensional polyaniline (2DPANI) crystal, which shows metallic out-of-plane charge transport with high electrical conductivity. The material comprises columnar π arrays with an interlayer distance of 3.59 Å and periodic rhombohedral lattices formed by interwoven polyaniline chains. Electron spin resonance spectroscopy reveals significant electron delocalization in the 2DPANI lattices. First-principles calculations indicate the in-plane 2D conjugation and strong interlayer electronic coupling in 2DPANI facilitated by the Cl-bridged layer stacking. To assess the local optical conductivity, we used terahertz and infrared nanospectroscopy to unravel a Drude-type conductivity with an infrared plasma frequency and an extrapolated local d.c. conductivity of around 200 S cm−1. Conductive scanning probe microscopy showed an unusually high out-of-plane conductivity of roughly 15 S cm−1. Transport measurements through vertical and lateral micro-devices revealed comparable high out-of-plane (roughly 7 S cm−1) and in-plane conductivity (roughly 16 S cm−1). The vertical micro-devices further showed increasing conductivity with decreasing temperature, demonstrating unique out-of-plane metallic transport behaviour. By using this multilayer-stacked 2D conducting polymer design, we predict the achievement of strong electronic coupling beyond in-plane interactions, potentially reaching three-dimensional metallic conductivity6,7.
转载本文请联系原作者获取授权,同时请注明本文来自诸平科学网博客。
链接地址:https://wap.sciencenet.cn/blog-212210-1472283.html?mobile=1
收藏