宋元元
全固态锂电池新突破,未来储能超有戏!
2025-9-3 15:01
阅读:681

InfoMat - 2025 - Zhao - Cover Image.jpg

《全固态锂电池界面问题的新解决方案》

在未来的电力存储技术中,全固态锂电池(SSLBs)因为其显著提升的安全性、能量密度和充电能力,正受到越来越多的关注。然而,它在发展过程中也面临着一些挑战。在SSLBs里,聚合物与陶瓷的界面兼容性不佳、陶瓷颗粒严重团聚以及电极/电解质界面离子传导不连续等问题,严重限制了锂离子(Li⁺)的传输,阻碍了其大规模应用和制造。为了解决这些问题,科学家们采用了新的方法。他们将石榴石型的Li₇La₃Zr₂O₁₂(LLZO)纳米颗粒引入聚丙烯腈(PAN)纳米纤维中,制造出一种聚合物 - 陶瓷纳米纤维增强的超薄固态电解质(SSE)膜(3D LLZO - PAN)。通过纳米纤维的限制作用,让LLZO纳米颗粒聚集起来,构建了锂离子的连续传导通道。同时,还设计了一种新颖的集成静电纺丝工艺,使正极与电解质界面之间形成紧密的物理接触。而且,聚丙烯腈(PAN)、聚环氧乙烷(PEO)和双(三氟甲磺酰)亚胺锂(LiTFSI)的协同作用,有助于形成稳定的固体电解质界面(SEI)层。这种新的固态电解质膜具有很多优点。它的厚度超薄,仅为16μm;离子传输速度快,达到2.9×10⁻⁴ S cm⁻¹;界面接触性能优异,电阻低至15.6Ω。在Li|3D LLZO - PAN|Li电池中,能在0.2 mA cm⁻²的电流密度下实现长达1500小时的循环。LiNi₀.₈Co₀.₁Mn₀.₁O₂|3D LLZO - PAN|Li电池在0.5 C的倍率下可以循环超过200次。采用实际LiNi₀.₈Co₀.₁Mn₀.₁O₂||Li配置的软包电池实现了345.8 Wh kg⁻¹的超高能量密度和良好的安全性能。这项研究为高能量密度全固态锂电池的制造和应用提供了新的策略,有望推动全固态锂电池在更多领域的大规模应用。

期刊

infomat

标题

Addressing the interface issues of all-solid-state lithium batteries by ultra-thin composite solid-state electrolyte combined with the integrated preparation technology

作者

Xiaoxue Zhao, Chao Wang, Xiaomeng Fan, Yang Li, Dabing Li, Yanling Zhang, Li-Zhen Fan

摘要

The interfacial engineering in solid-state lithium batteries (SSLBs) is attracting escalating attention due to the profoundly enhanced safety, energy density, and charging capabilities of future power storage technologies. Nonetheless, polymer/ceramic interphase compatibility, serious agglomeration of ceramic particles, and discontinuous ionic conduction at the electrode/electrolyte interface seriously limit Li+ transport in SSLBs and block the application and large-scale manufacturing. Hence, garnet Li7La3Zr2O12 (LLZO) nanoparticles are introduced into the polyacrylonitrile (PAN) nanofiber to fabricate a polymer-ceramic nanofiber-enhanced ultrathin SSE membrane (3D LLZO-PAN), harnessing nanofiber confinement to aggregate LLZO nanoparticles to build the continuous conduction pathway of Li+. In addition, a novel integrated electrospinning process is deliberately designed to construct tight physical contact between positive electrode/electrolyte interphases. Importantly, the synergistic effect of the PAN, polyethylene oxide (PEO), and lithium bis((trifluoromethyl)sulfonyl)azanide (LiTFSI) benefits a stable solid electrolyte interphase (SEI) layer, resulting in superior cycling performance, achieving a remarkable 1500 h cycling at 0.2 mA cm−2 in the Li|3D LLZO-PAN|Li battery. Consequently, the integrated polymer-ceramic nanofiber-enhanced SSEs simultaneously achieve the balance in ultrathin thickness (16 μm), fast ion transport (2.9 × 10−4 S cm−1), and superior excellent interface contact (15.6 Ω). The LiNi0.8Co0.1Mn0.1O2|3D LLZO-PAN|Li batteries (2.7–4.3 V) can work over 200 cycles at 0.5 C. The pouch cells with practical LiNi0.8Co0.1Mn0.1O2||Li configuration achieve an ultrahigh energy density of 345.8 Wh kg−1 and safety performance. This work provides new strategies for the manufacturing and utilization of high-energy-density SSLBs.

原文链接

https://onlinelibrary.wiley.com/doi/10.1002/inf2.70012

<静远嘲风-南京>设计制作

微信图片_20230519124423.jpg 

   购书链接:

科学的颜值:学术期刊封面故事及图像设计 

   https://item.jd.com/12802188.html

科技绘图/科研论文图/论文配图设计与创作自学手册:CorelDRAW篇 

   https://item.jd.com/13504674.html

科技绘图/科研论文图/论文配图设计与创作自学手册:Maya+PSP篇

   https://item.jd.com/13504686.html

科技绘图/科研论文图/论文配图设计与创作自学手册:科研动画篇

   https://item.jd.com/13048467.html#crumb-wrap

SCI图像语法-科技论文配图设计使用技巧

    https://item.jd.com/10073529532924.html?bbtf=1

微信图片_20220509133450.jpg

静远嘲风(MY Scimage) 成立于2007年,嘲风取自中国传统文化中龙生九子,子子不同的传说,嘲风为守护屋脊之瑞兽,喜登高望远;静远取自成语“宁静致远”,登高莫忘初心,远观而不可务远。

微信图片_20220512163044.jpg

学习更多绘图教程关注:

微信图片_20230620105059.jpg

最新2.jpg

转载本文请联系原作者获取授权,同时请注明本文来自宋元元科学网博客。

链接地址:https://wap.sciencenet.cn/blog-519111-1500265.html?mobile=1

收藏

分享到:

当前推荐数:1
推荐人:
推荐到博客首页
网友评论0 条评论
确定删除指定的回复吗?
确定删除本博文吗?