lvxiangyang的个人博客分享 http://blog.sciencenet.cn/u/lvxiangyang

博文

Meta分析/R-Meta分析核心技术

已有 291 次阅读 2025-5-21 15:34 |个人分类:生态学|系统分类:科研笔记

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,现已广泛应用于农林生态,资源环境等方面,成为Science、Nature论文的重要分析方法。

一:AI+Meta分析的选题与检索、寻找科学问题

1、AI大模型助力Meta分析的选题与文献检索

1)什么是Meta分析

2)Meta分析的选题策略

3)精确检索策略,如何检索全、检索准

4)文献的管理与清洗,如何制定文献纳入排除标准

5)文献数据获取技巧,研究课题探索及科学问题的提出

6)文献计量分析CiteSpace、VOSViewer、R bibliometrix及研究热点分析

7)AI大模型的发展与底层逻辑

8)AI大模型的高级提问框架

9)AI大模型助力寻找科学问题

二:AI助力Meta分析与R语言数据清洗及统计方法

2、Meta分析的常用软件/R语言基础及统计学基础

1)R语言做Meta分析的优势及其《Nature》、《Science》经典案例应用

2)AI大模型助力,实现R语言基本操作与数据清洗

3)统计学基础和常用统计量计算、三大检验

4)传统统计学与Meta分析的异同

5)R语言Meta分析常用包及相关插件

三:AI+R语言Meta效应值计算与图形绘制

3、AI大模型助力R语言Meta效应值计算

1)R语言Meta分析的流程

2)各类meta效应值计算、自编程序和调用函数的对比

3)R语言meta包和metafor包的使用

4)如何用R基础包和ggplot2绘制漂亮的森林图

四:如何利用AI+R语言Meta分析与回归分析、混合模型构建

4、AI大模型助力R语言Meta分析与混合效应模型构建

1)Meta分析的权重计算

2)Meta分析中的固定效应、随机效应

3)如何对Meta模型进行统计检验和构建嵌套模型、分层模型

4)Meta回归和普通回归、混合效应模型的对比及结果分析

5)使用Rbase和ggplot2绘制Meta回归图

五:AI+R语言Meta诊断分析进阶

5、AI大模型助力R语言Meta诊断进阶

1)Meta诊断分析

2)异质性检验及发表偏移、漏斗图、雷达图、发表偏倚统计检验

3)敏感性分析、增一法、留一法、增一法、Gosh图

4)风险分析、失安全系数计算

5)Meta模型比较和模型的可靠性评价

6)Bootstrap重采样方法评估模型的不确定性

7)如何使用多种方法对文献中的SD、样本量等缺失值的处理

8)AI大模型复现Science最新Meta分析

六:AI+R语言Meta分析的不确定性及贝叶斯Meta分析

6、AI大模型助力R语言Meta分析的不确定性

1)网状Meta分析

2)贝叶斯理论和蒙特拉罗马尔可夫链MCMC

3)如何使用MCMC优化普通回归模型和Meta模型参数

4)R语言贝叶斯工具Stan、JAGS和brms

5)贝叶斯Meta分析及不确定性分析

七:AI+Meta机器学习方法应用

7、AI大模型助力机器学习在Meta分析中的应用

1)机器学习基础以及Meta机器学习的优势

2)Meta加权随机森林(MetaForest)的使用

3)使用Meta机器学习和传统机器学习对文献中的大数据训练与测试

4)如何判断Meta机器学习使用随机效应还是固定效应以及超参数的优化

5)使用Meta机器学习进行驱动因子分析、偏独立分析PDP

Meta分析/R-Meta分析核心技术



https://wap.sciencenet.cn/blog-3595493-1486603.html

上一篇:基于DeepSeek和Python的高光谱遥感从数据到智能决策全流程实现与城市、植被、水体、地质、土壤五维一体应用
收藏 IP: 111.225.73.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-5-23 12:46

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部