yifeier12的个人博客分享 http://blog.sciencenet.cn/u/yifeier12

博文

译《地表MODIS数据可见光中红外大气校正:背景、操作及验证》

已有 4087 次阅读 2014-7-1 10:41 |个人分类:译文|系统分类:科研笔记

原文名:Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation

发表于:JOURNAL OF GEOPHYSICAL RESEARCH, VOL.102, NO.D14,PAGES 17,131-17,141, JULY 27, 1997


EOS-MODIS数据在可见光-中红外波段地表大气校正:背景、操作算法及验证



1996年3月21日接收,1996年12月3日修改完毕,1996年12月3日接受


摘要:NASA的MODIS仪器为地表研究提供了250m分辨率的全球信息源。在获取基于地表发射率衍生出的各种生物物理参数之前,大气层顶部信号需要进行大气效应的辐射定标与校正。本文提供了一些现有最新的用于MODIS 1-7波段(中心位于648,858,470,1240,1640和2130nm)的大气校正技术的详细介绍。之前的校正方案都是假设一个标准大气,具有0值或者常数的气溶胶含量以及均一的郎伯表面。这里介绍的可行的MODIS大气校正算法使用了MODIS提供的气溶胶和水蒸气信息,矫正了邻近效应及观察表面的方向属性。本位还描述了一些该项技术可实现的部分及其优化。该技术应用于Landsat的TM数据,NOAA的AVHRR数据,MODIS的MAS和AERONET的根据地面测量进行验证等。


1.引言

   使用MODIS数据检索陆地参数(如BRDF、反射率、植被指数、光合有效辐射分量FPAR、叶面积指数)需要先将大气层顶部辐射值转化到地表反射率。通过本文提出的算法和相关处理代码,可以将MODIS 1B数据进行大气效应校正,生成地表反射率产品。大气校正需要输入影响大气层顶部信号测量的变量成分(见图1,表1a和1b)以及一个大气散射和吸收的校正模型(一个波段吸收模型和多次散射(multiple-scattering)矢量代码)。另外,一个准确的大气校正需要大气点扩散函数(高分波段)的校正以及大气效应和表面BRDF的耦合。

   过去的几年中,法国光学实验室投入大量精力致力于大气效应的建模。最近发布的6S辐射代码[Vermote  et等,1997],很好的适用于各种遥感应用并且很好的进行了记录。它包括对大气点扩散效应和表面反射方向性的模拟。我们现在利用6S代码作为参考,进行各种算法间的比较,用来验证MODIS大气校正算法的校正效果。比如说,表1a和表1b表明了6S代码应用于现有环境传感器的大气效应相对关系。

   我们的计划是利用MODIS大气产品和附属数据集作为大气校正的数据。利用MODIS气溶胶群进行了区域气溶胶补偿。该操作算法一个重要的方面是不进行精度目标让步的情况下,协调大量输入数据和产品的快速输出。



参考文献:

Holben, B. N., et al.,  Automatic  Sun  and  sky  scanning  radiometer system  for  Network  Aerosol  Monitoring, Remote Sens. Environ., in press,  1997.

Kaufman,  Y.  J.,  Solution  of  the  equation  of  radiative  transfer  for remote  sensing  over  two-dimensional  surface  reflectivity,  J.  Geophys. Res.,  20,  4137-4147,  1982.

Kaufman,  Y.  J.,  D.  Tan&  L.  Remer,  E.  F.  Vermote,  A.  Chu, and  B.N.Holben,  Operational  remote  sensing  of  tropospheric  aerosol  over land  from  EOS  moderate  resolution  imaging  spectroradiometer, J.Geophys. Res., this issue.

Kimes,  D.  S.,  W.  W.  Newcomb,  R.  F.  Nelson,  and  J.  B.  Schutt,  Directional  reflectance  distributions  of  a  hardwood  and  pine  forest  canopy,  IEEE  Trans.  Geosci.  Remote  Sens.,  GE-24(2),  281-293,  1986.

Lee,  T.  Y.,  and  Y.  J.  Kaufman,  Non-Lambertian  effects  on  remote sensing  of  surface  reflectance  and  vegetation  index,  IEEE  Trans.Geosci. Remote Sens., GE-24, 699-708, 1986.

Mekler,  Y.,  and  Y.J.Kaufman, The effect  of  Earth’s atmosphere on contrast reduction  for  a  nonuniform  surface  albedo  and two-halves field,  J. Geophy~. Res., 85, 4067-4083,  1980.

Myneni,R.B., G. Asrar, and F.G.Hall, A three dimensional radiative transfer model for optical  remote  sensing  of  vegetated  land  surfaces, Remote Sew. Environ., 41, 85-103,  1992.

Putsay,  M.,  A  simple  atmospheric  correction  method for  the  short wave  satellite  image,  Inr.  J.  Remote  Sens.,  13(8),  1549-3558,  1992.

Roger,  J.  C.,  and  E.  F.  Vermote,  Computation  and  use  of  the  reflectivity  at  3.75  pm  from  AVHRR  thermal  channels,  Remote  Sens.  Rev.,in  press, 1996.

Roger,J.C., E.F.Vermote, and N.El Saleous, Atmospheric correction of MAS data  during  SCAR-A  experiment,  in  Atmosphetic  Sensing  and  Modeling,  SPIE  Proc.,  231 I,  83-89.  1994.

Running,  S.  W.,  et  al.,  Terrestrial  remote  sensing  science  and  algorithms  planned  for  EOS/MODIS,  ht.  J.  Remote  Sens.,  15( 17).  3587-3620,  1994.

Strahler,  A.  H., M.J.Barnsley,R.d’Entremont,  B.  Hu.  P.  Lewis.X.Li,J.  Muller,  C.  B.  Schaaf.  W.  Wanner,  and  B.  Zhang,  MODIS  BRDF/albedo  product  version  3.2,  Algorithm  technical  background  document,  NASA  EOS-MODIS  Dot.  Update,  65  pp..  1995.

Tanrt,  D.,  M.  Herman, and  P.  Y.  Deschamps,  Influence  of  the  background  contribution  upon  space  measurements  of  ground  reflectance,  Appl.  Opt.,  20,  3673-3684,  1981.

Tam+,  D.,  M.  Herman  and  P.  Y.  Deschamps,  Influence  of  the  atmosphere  on  space  measurements  of  directional  properties,  Appl.  Opt.,21,  733-741,1983.

Tanre,  D.,  B.  N.  Holben, and Y. J. Kaufman, Atmospheric Correction algorithm for NOAA-AVHRR  products:  Theory  and  application,IEEE Trans.Geosci. Remote Sens., 30(2),  231-248.  1992.

Vermote,E..L.A.Remer,C.0.Justice, Y.J.Kaufman, and D.Tanre, Atmospheric correction algorithm: Spectral  reflectances (MOD09),version 2.0. Algorithm technical background document, NASA

EOS-ID 201.5 Dot.,42 pp.,1995.

Vermote, E. F., D. Tanre, J. L. Deuze, M. Herman, and J.J.Morcrette,  Second  simulation of  the  satellite  signal  in  the  solar spectrum:  An  overview,  IEEE  Trans.  Geosci.  Remote  Sew., in  press.1997.





https://wap.sciencenet.cn/blog-887780-808079.html

上一篇:译《6S:An Overview》摘要
下一篇:译《利用6S进行卫星数据估算地表发射率的大气和光谱校正》摘要
收藏 IP: 202.114.120.*| 热度|

1 Vetaren11

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-6-8 00:48

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部