CZC的个人博客分享 http://blog.sciencenet.cn/u/CZC

博文

年终盘点:2019年神经发育及成年神经再生十大研究突破​​

已有 3419 次阅读 2020-1-12 14:35 |个人分类:神经科学临床和基础|系统分类:科研笔记

2019年神经发育及成年神经再生十大研究突破


1. Nature—脊椎动物“新大脑的进化依赖于神经嵴调节性神经环路的逐渐获得

英文摘要:

The neural crest, an embryonic stem-cell population, is avertebrate innovation that has been proposed to be a key component of the 'newhead', which imbued vertebrates with predatory behaviour1,2. Here,to investigate how the evolution of neural crestcells affected the vertebrate body plan, we examined the molecular circuitsthat control neural crest developmentalong the anteroposterior axis of a jawless vertebrate, the sea lamprey. Geneexpression analysis showed that the cranial subpopulation of the neural crest of the lamprey lacks most components of atranscriptional circuit that is specific to the cranial neuralcrest in amniotes and confers the ability to form craniofacial cartilage ontonon-cranial neural crest subpopulations3.Consistent with this, hierarchical clustering analysis revealed that thetranscriptional profile of the lamprey cranial neuralcrest is more similar to the trunk neural crest ofamniotes. Notably, analysis of the cranial neuralcrest in little skate and zebrafish embryos demonstrated that thetranscriptional circuit that is specific to the cranial neuralcrest emerged via the gradual addition of network components to the neural crest of gnathostomes, which subsequently becamerestricted to the cephalic region. Our results indicate that the ancestral neural crest at the base of the vertebrate lineagepossessed a trunk-like identity. We propose that the emergence of the cranial neural crest, by progressive assembly of anaxial-specific regulatory circuit, allowed the elaboration of the new headduring vertebrate evolution.

参考文献:

Martiket al (2019). Evolution of the new head by gradual acquisition of neural crestregulatory circuits. Nature. 2019 Oct;574(7780):675-678.

 

2. Science—研究揭示了人类小脑发育中原祖细胞区的时空扩张特征

英文摘要:

Wepresent histological and molecular analyses of the developing human cerebellumfrom 30 days after conception to 9 months after birth. Differences indevelopmental patterns between humans and mice include spatiotemporal expansionof both ventricular and rhombic lip primary progenitor zones to includesubventricular zones containing basal progenitors. The human rhombic lippersists longer through cerebellar developmentthan in the mouse and undergoes morphological changes to form a progenitor poolin the posterior lobule, which is not seen in other organisms, not even in thenonhuman primate the macaque. Disruptions in human rhombic lip development are associated with posterior cerebellarvermis hypoplasia and Dandy-Walker malformation. The presence ofthese species-specific neural progenitorpopulations refines our insight into human cerebellar developmental disorders.

参考文献:

Haldipuret al (2019). Spatiotemporal expansion of primary progenitor zones in thedeveloping human cerebellum. Science. 2019 Oct 25;366(6464):454-460.

 

3. Cell— 科学家开创了一种方法以研究胚胎发育过程中神经环路是如何涌现的

英文摘要:

Animalsurvival requires a functioning nervous system to develop during embryogenesis.Newborn neurons must assemble into circuits producing activity patterns capableof instructing behaviors. Elucidating how this process is coordinated requiresnew methods that follow maturation and activity of all cells across adeveloping circuit. We present an imaging method for comprehensivelytracking neuron lineages, movements, molecular identities, and activity in theentire developing zebrafish spinal cord, from neurogenesisuntil the emergence of patterned activity instructing the earliest spontaneousmotor behavior. We found that motoneurons are active first and form localpatterned ensembles with neighboring neurons. These ensembles merge,synchronize globally after reaching a threshold size, and finally recruitcommissural interneurons to orchestrate the left-right alternating patternsimportant for locomotion in vertebrates. Individual neurons undergo functionalmaturation stereotypically based on their birth time and anatomical origin. Ourstudy provides a general strategy for reconstructing how functioning circuitsemerge during embryogenesis.

参考文献:

Wan et al (2019). Single-Cell Reconstruction of EmergingPopulation Activity in an Entire Developing Circuit. Cell. 2019 Oct3;179(2):355-372.e23.

 

4. Cell—在神经系统发育过程中,迁移的神经嵴细胞具有吞噬死亡细胞的功能

英文摘要:

Duringneural tube closure and spinal cord development, many cells die in both the central andperipheral nervous systems (CNS and PNS, respectively). However,myeloid-derived professional phagocytes have not yet colonized the trunk regionduring early neurogenesis. How apoptotic cells areremoved from this region during these stages remains largely unknown. Usinglive imaging in zebrafish, we demonstrate that neuralcrest cells (NCCs) respond rapidly to dying cells and phagocytose cellulardebris around the neural tube. Additionally, NCCshave the ability to enter the CNS through motor exit point transitionzones and clear debris in the spinal cord. Surprisingly, NCCs phagocytosismechanistically resembles macrophage phagocytosis and their recruitment towardcellular debris is mediated by interleukin-1β. Taken together, our resultsreveal a role for NCCs in phagocytosis of debris in the developing nervoussystem before the presence of professional phagocytes.

参考文献:

Zhu et al (2019). Migratory Neural Crest CellsPhagocytose Dead Cells in the Developing Nervous System. Cell. 2019 Sep19;179(1):74-89.e10.

 

5. Nature—衰老大脑中侵润的T细胞通过干扰素抑制成年神经新生

英文摘要:

Themammalian brain contains neurogenic niches that comprise neuralstem cells and other cell types. Neurogenic niches become less functional withage, but how they change during ageing remains unclear. Here we performsingle-cell RNA sequencing of young and old neurogenic niches in mice. Theanalysis of 14,685 single-cell transcriptomes reveals a decrease in activated neural stem cells, changes in endothelial cells andmicroglia, and an infiltration of T cells in old neurogenic niches. T cellsin old brains are clonally expanded and are generally distinct from those inold blood, which suggests that they may experience specific antigens. Tcells in old brains also express interferon-γ, and the subset of neural stem cells that has a high interferon responseshows decreased proliferation in vivo. We find that T cells can inhibit the proliferationof neural stem cells in co-cultures and in vivo,in part by secreting interferon-γ. Our study reveals an interaction betweenT cells and neural stem cells in old brains,opening potential avenues through which to counteract age-related decline inbrain function.

参考文献:

Dulken et al (2019). Single-cell analysis reveals T cellinfiltration in old neurogenic niches. Nature. 2019 Jul;571(7764):205-210.

 

6. Science—研究揭示鼠神经嵴细胞细胞命运决定的时空结构特征

英文摘要:

Neural crest cells are embryonic progenitors thatgenerate numerous cell types in vertebrates. With single-cell analysis, we showthat mouse trunk neural crest cells become biasedtoward neuronal lineages when they delaminate from the neuraltube, whereas cranial neural crest cells acquireectomesenchyme potential dependent on activation of the transcription factor Twist1.The choices that neural crest cells make to becomesensory, glial, autonomic, or mesenchymal cells can be formalized as a seriesof sequential binary decisions. Each branch of the decision tree involvesinitial coactivation of bipotential properties followed by gradual shiftstoward commitment. Competing fate programs are coactivated before cellsacquire fate-specific phenotypic traits. Determination of a specific fate isachieved by increased synchronization of relevant programs and concurrentrepression of competing fate programs.

参考文献:

Soldatov et al (2019). Spatiotemporal structure of cellfate decisions in murine neural crest. Science. 2019 Jun 7;364(6444).

 

7. Nature—中枢神经系统中的神经干细胞迁移到肿瘤中以促进肿瘤神经新生和肿瘤侵袭和复发

英文摘要:

Autonomicnerve fibres in the tumour microenvironment regulate cancer initiation anddissemination, but how nerves emerge in tumours is currently unknown. Here weshow that neural progenitors from the centralnervous system that express doublecortin (DCX+) infiltrate prostatetumours and metastases, in which they initiate neurogenesis.In mouse models of prostate cancer, oscillations of DCX+ neural progenitors in the subventricular zone-aneurogenic area of the central nervous system-are associated with disruption ofthe blood-brain barrier, and with the egress of DCX+ cells into thecirculation. These cells then infiltrate and reside in the tumour, andcan generate new adrenergic neurons. Selective genetic depletion of DCX+cells inhibits the early phases of tumour developmentin our mouse models of prostate cancer, whereas transplantation of DCX+neural progenitors promotes tumour growth andmetastasis. In humans, the density of DCX+ neuralprogenitors is strongly associated with the aggressiveness and recurrence ofprostate adenocarcinoma. These results reveal a unique crosstalk between thecentral nervous system and prostate tumours, and indicate neural targets for the treatment of cancer.

参考文献:

Mauffrey et al(2019). Progenitors from the centralnervous system drive neurogenesis in cancer. Nature. 2019May;569(7758):672-678.

 

8. Cell—研究发现神经发育和成年神经新生可能均起源于相同的胚胎干细胞

英文摘要:

Newneurons arise from quiescent adult neuralprogenitors throughout life in specific regions of the mammalian brain. Littleis known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give riseto proliferative Hopx+ neuralprogenitors in the primitive dentate region, and they, in turn, generategranule neurons, but not other neurons, throughout developmentand then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period.RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal,and adult dentate neural progenitors furtherreveal common molecular and epigenetic signatures and developmental dynamics.Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes todentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelongextension of development that maintains heightenedplasticity in the mammalian hippocampus.

参考文献:

Berget al (2019). A Common Embryonic Origin of Stem Cells Drives Developmental andAdult Neurogenesis. Cell. 2019 Apr 18;177(3):654-668.e15.

 

9. Cell—静息态使衰老大脑中的神经干细胞保持其生存及再生能力

英文摘要:

Thefunction of somatic stem cells declines with age. Understanding the molecularunderpinnings of this decline is key to counteract age-related disease. Here,we report a dramatic drop in the neural stem cells(NSCs) number in the aging murine brain. We find that this smallerstem cell reservoir is protected from full depletion by an increase inquiescence that makes old NSCs more resistant to regenerate the injuredbrain. Once activated, however, young and old NSCs show similar proliferationand differentiation capacity. Single-cell transcriptomics of NSCs indicate thataging changes NSCs minimally. In the aging brain, niche-derived inflammatorysignals and the Wnt antagonist sFRP5 induce quiescence. Indeed, intervention toneutralize them increases activation of old NSCs during homeostasis andfollowing injury. Our study identifies quiescence as a key feature of old NSCsimposed by the niche and uncovers ways to activate NSCs to repair the agingbrain.

参考文献:

Kalamakis et al (2019). Quiescence Modulates Stem CellMaintenance and Regenerative Capacity in the Aging Brain. Cell. 2019 Mar7;176(6):1407-1419.e14.

 

10. Cell—科学家发现脑类器官是研究人类特异性脑进化的模型

英文摘要:

Directcomparisons of human and non-human primate brains can reveal molecular pathwaysunderlying remarkable specializations of the human brain. However, chimpanzeetissue is inaccessible during neocortical neurogenesiswhen differences in brain size first appear. To identify human-specificfeatures of cortical development, weleveraged recent innovations that permit generating pluripotent stemcell-derived cerebral organoids from chimpanzee. Despite metabolicdifferences, organoid models preserve gene regulatory networks related toprimary cell types and developmental processes. We further identified 261differentially expressed genes in human compared to both chimpanzeeorganoids and macaque cortex, enriched for recent gene duplications, andincluding multiple regulators of PI3K-AKT-mTOR signaling. We observedincreased activation of this pathway in human radial glia, dependent on tworeceptors upregulated specifically in human: INSR and ITGB8. Our findingsestablish a platform for systematic analysis of molecular changes contributingto human brain development and evolution.

参考文献:

Pollen et al (2019). Establishing Cerebral Organoids asModels of Human-Specific Brain Evolution. Cell. 2019 Feb 7;176(4):743-756.e17.

 

2019年十大研究进展名录

1. 年终盘点:2019年帕金森病十大基础研究进展

2. 年终盘点:2019年帕金森病十大临床研究进展

3. 年终盘点:2019年阿尔茨海默病十大基础研究进展

4. 年终盘点:2019年阿尔茨海默病十大临床研究进展

5. 年终盘点:2019年神经科学领域十大基础研究进展

6. 年终盘点:2019年抑郁症领域十大基础研究进展(一半来自中国)

7. 年终盘点:2019年脑血管病领域十大基础研究进展

8. 年终盘点:2019年神经炎症领域十大基础研究进展

9. 年终盘点:2019年神经活动记录十大基础研究进展

10. 年终盘点:2019年ALS/FTD十大基础研究进展

11. 年终盘点:2019年医学和生物学领域深度学习和神经网络十大基础研究进展

12. 年终盘点:2019年神经内科十大临床研究突破

13. 年终盘点:2019年疼痛防治和痛觉机制十大研究突破

14. 年终盘点:2019年睡眠和失眠领域十大研究突破


2018年十大研究进展名录

1.盘点2018年阿尔茨海默病十大研究突破

2.盘点2018年帕金森病十大研究突破

3. 盘点2018年神经科学二十大研究突破

4. 盘点2018年渐冻症(ALS)十大研究进展

5. 盘点2018年全球脑卒中十大研究进展

6. 盘点2018年神经影像十大研究进展

7. 盘点2018年神经炎症领域的十大研究突破

8. 盘点2018年神经变性痴呆十大研究突破

9. 2018年神经科学“学习和记忆”领域十大研究进展

10. 2018年抑郁症领域的十大研究突破

11. 2018年痛觉和疼痛领域的十大研究突破

12. 2018年的神经干细胞研究十大研究进展

13. 2018年的神经干细胞研究十大研究进展

14. 2018年的十大睡眠研究突破

15. 2018年“衰老和长生不老”领域的十大研究突破

16. 2018年自闭症领域的十大研究突破




欢迎加入60个“神经科学临床和基础社群”

1、神经科学临床和基础主群(500人)已满;

2、神经科学临床和基础Alzheimer亚群;

3、神经科学临床和基础Parkinson亚群;

4、神经科学临床和基础cerebrovascular亚群;

5、神经科学临床和基础Depression亚群;

6、神经科学临床和基础Movement disorders亚群;

7、神经科学临床和基础Neuroimmunology亚群;

8、神经科学临床和基础Psychiatry亚群;

9、神经科学临床和基础Neuroimaging亚群;

10、神经科学临床和基础Neurogenetics亚群;

11、神经科学临床和基础Neurodegeneration亚群;

12、神经科学临床和基础Epilepsy亚群;

13、神经科学临床和基础Sleep亚群;

14、神经科学临床和基础Neural Development亚群;

15、神经科学临床和基础Electrophysiology亚群;

16、神经科学临床和基础Neural circuits亚群;

17、神经科学临床和基础神经调控和脑机接口亚群;

18、神经科学临床和基础人工智能亚群;

19、神经科学临床和基础重大疾病和疑难病亚群;

20、神经科学临床和基础衰老和永生亚群;

21、神经科学临床和基础周围神经病群;

22、神经科学临床和基础神经肌肉疾病群;

23、神经科学临床和基础视觉系统研究群;

24、神经科学临床和基础疼痛研究群;

25、神经科学临床和基础Emotion研究群;

26、神经科学临床和基础意识研究群;

27、神经科学临床和基础Learning & Memory亚群;

28、神经科学国自然基金申请交流群;

29、神经科学ALS/FTD交流群;

30、神经科学脑外伤和脊髓外伤研究群;

31、神经科学儿科神经病学交流群;

32、神经科学Autism & ADHD研究群;

33、神经科学大数据和组学研究群;

34、神经科学非编码RNA研究群;

35、神经科学schizophrenia研究群;

36、神经科学Non-human primate研究群;

37、神经科学神经损伤与修复研究群;

38、神经科学Epigenetics研究群;

39、神经科学神经介入和静脉溶栓亚群;

40、神经科学计算神经科学亚群;

41、神经科学基因治疗交流群;

42、神经科学细胞治疗交流群;

43、神经科学纳米药物治疗交流群;

44、神经科学中医药治疗交流群;

45、神经科学免疫调节治疗交流群;

46、神经科学类器官和类脑研究交流群;

47、神经科学语言研究交流群;

48、神经科学深度学习和神经网络交流群;

49、神经科学类神经元和类脑器件设计交流群;

50、神经科学半人半机器人交流群;

51、神经科学感染性疾病研究群;

52、神经科学神经系统肿瘤研究群;

53、神经科学星型和小胶质细胞研究群;

54、神经科学神经外科研究群;

55、神经科学系统论和复杂性研究交流群;

56、神经科学脑肠轴和Microbiota交流群;

57、神经科学虚拟现实、增强现实和混合现实交流群;

58、神经科学临床试验和流行病学研究交流群;

59、神经科学单细胞测序研究交流群;

60、神经科学蛋白质解析交流群。

如果想入群,请加我微信(qingyierjing),并回复要加入的群,我会将您拉入群中。


20个神经科学领域的突破可能获得诺贝尔奖

1. 意识研究:意识的本质、组成、运行机制及其物质载体;不同意识层次的操控和干预,意识障碍性疾病的治疗。

2. 学习和记忆的机制及其调控:记忆的形成和消退机制,记忆的人为移植和记忆的人为消除等;

3. 痴呆研究:阿尔茨海默病的机制和治疗研究,血管性痴呆、额颞叶痴呆、路易体痴呆的机制研究和治疗。

4. 睡眠和睡眠障碍的机制和干预研究。

5. 情绪研究:喜、怒、哀、恐等基本情绪的机制和相关疾病的治疗。

6. 计算和逻辑推理的神经科学基础研究。

7. 语言的神经科学基础研究。

8. 视觉图像形成和运用的神经科学基础研究。

9. 创造力、想象力和艺术文学创造的神经基础研究。

10. 痛觉的神经科学基础及其干预研究

11. 性行为研究:性行为的神经科学基础研究和性行为的调控和干预。

12. 脑和脊髓损伤的机制及其干预研究,包括脑卒中、脊髓损伤机制研究,神经干细胞移植研究,新型神经修复技术,神经康复技术。

13. 精神类疾病的机制和干预研究:自闭症、精分、抑郁症、智能障碍、药物成瘾等;

14. 运动神经元病等神经变性病机制研究及其干预。

15. 衰老的机制和永生研究,包括大脑衰老的机制和寿命延长研究。

16. 神经系统遗传病的机制研究及基因治疗。

17. 神经操纵和调控技术:光遗传技术、药物遗传技术、基因编辑技术、经颅磁刺激、深部脑刺激和电刺激等。

18. 脑组织兼容性电子微芯片及脑机互动装置研究,包括脑机接口、神经刺激芯片、记忆存储芯片,意识存储芯片,人脑非语言互动装置等。

19. 半人半机器人的设计、完善和修复技术:包括任何机械肢体的人类移植,大脑移植入机器体内等。

20. 新型大脑成像和神经元活动记录技术:高分辨率成像技术、大型电极微阵列技术等。


 





https://wap.sciencenet.cn/blog-661795-1213902.html

上一篇:年终盘点:2019年睡眠和失眠领域十大研究突破​
下一篇:年终盘点:2019年大脑学习和记忆的十大研究突破
收藏 IP: 170.140.104.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-29 16:00

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部