宋元元
2025年07月嘲风作品集(一)
2025-9-3 14:37
阅读:652

Energy   Environ Materials - 2025 -  - Issue Information-1.jpg

▲ Vol 08 Issue 04 |  July , 2025

Coupling Lattice Strain and Sulfur Vacancy in Tin Monosulfide/Reduced Graphene Oxide Composite for High-Performance Sodium-Ion Storage

Yitong Jiang, Yihong Zheng, Lijuan Tong, Kun Zuo, Mulan Tu, Shihong Chen, Xiaochuan Chen, Junxiong Wu, Qinghua Chen, Xiaoyan Li, Yuming Chen

Sodium-ion batteries have garnered significant attention as a cost-effective alternative to lithium-ion batteries due to the abundance and affordability of sodium precursors. However, the lack of suitable electrode materials with both high capacity and excellent stability continues to hinder their practical viability. Herein, we couple lattice strain and sulfur deficiency effects in a tin monosulfide/reduced graphene oxide composite to enhance sodium storage performance. Experimental results and theoretical calculations reveal that the synergistic effects of lattice strain and sulfur vacancies in tin monosulfide promote rapid (de)intercalation near the surface/edge of the material, thereby enhancing its pseudocapacitive sodium storage properties. Consequently, the strained and defective tin monosulfide/reduced graphene oxide composite demonstrates a high reversible capacity of 511.82 mAh g−1 at 1 A g−1 and an outstanding rate capability of 450.60 mAh g−1 at 3 A g−1. This study offers an effective strategy for improving sodium storage performance through lattice strain and defect engineering.

https://onlinelibrary.wiley.com/doi/10.1002/eem2.12891

微信图片_20250820150816.jpg

▲ Vol 04 Issue 03 |  July , 2025

Porous nitrogen-doped graphdiyne templated from zinc acetylacetonate for enhanced oxygen reduction reaction

Wenyan Si, Meiping Li, Xingru Yan, Qing Lv, Changshui Huang

Catalysts for the oxygen reduction reaction (ORR) are crucial for energy conversion and storage. Notably, the number of available active sites directly influences the catalyst activity. A large specific surface area is conducive to the creation of more active sites on a catalyst, thereby improving its performance. Zn precursors easily decompose or volatilize at high temperatures, forming a structure with abundant pores, thereby facilitating nitrogen doping. A method for enhancing the ORR activity of nitrogen-doped graphdiyne (GDY) was developed by employing zinc acetylacetonate as a pore-forming agent to increase the exposure of the active N sites. The as-prepared catalyst (denoted as ZnT-N-GDY, where T refers to the template) outperformed Pt/C in the ORR and maintained stable cycling over 2000 cycles in zinc-air batteries, facilitated by the increased exposure of the active N sites, especially pyridinic nitrogen.

https://www.sciencedirect.com/science/article/pii/S2772571525000130?via%3Dihub=

微信图片_20250725164106.jpg

▲ Vol 59 Issue 25 |  July 01, 2025

Small Black Phosphorus Disrupts Vascular Development and Hematopoiesis in Zebrafish Larvae

Zhuyi Zhang, Hua Chang, Yu Hao, Zikang Li, Hua Qin, Xinyi Yu, Jiaorong Li, Mengxi Cao, Ling Wang, Yong Liang, Li Cai, Runzeng Liu, Xiaoxi Yang, Yanhong Wei, Guibin Jiang

Black phosphorus (BP), a novel two-dimensional (2D) material, has shown promising applications in the optoelectronic, biological, and medical fields in recent years. However, its increasing use may lead to its inadvertent environmental release, creating potential ecological and health risks that remain poorly understood. In this study, wild-type and transgenic zebrafish were used to evaluate the potential developmental toxicity of small-size BP (S-BP), with a lateral particle size of 154.4 ± 34.6 nm, focusing specifically on vascular growth and hematopoiesis at relatively low concentrations of 0.025, 0.05, 0.1, and 0.2 mg/L. The results indicated that S-BP adhered to the chorion and induced developmental defects. The uninflated swim bladders and decreased heart rate were observed in S-BP-exposed larvae at 120 hpf. The angioarchitectural profiling using transgenic zebrafish showed that exposure to S-BP adversely impaired blood vessel development at 72 hpf, especially in the common cardinal vein (CCV). Moreover, erythropoiesis and the flow velocity of red blood cells (RBCs) were disturbed at 120 hpf in all of the S-BP-exposed groups. Transcriptomic analysis unveiled that S-BP exposure altered gene expression related to angiogenesis, hematopoiesis, ribosome function, and transport processes. Notably, the mRNA levels of vascular and hematopoietic markers, including clec14a, nme2b.1, klf2a, slc2a1a, csf1rb, atf3, scl, and scml4, were significantly downregulated following S-BP exposure. Our findings revealed that low concentrations of S-BP exposure caused vascular and hematologic toxicity and identified CCV and RBCs as sensitive targets. This work expands our understanding of the toxicity of 2D nanomaterials and provides critical data for environmental risk assessment.

https://pubs.acs.org/doi/10.1021/acs.est.4c14490

<静远嘲风-南京>设计制作

微信图片_20230519124423.jpg 

   购书链接:

科学的颜值:学术期刊封面故事及图像设计 

   https://item.jd.com/12802188.html

科技绘图/科研论文图/论文配图设计与创作自学手册:CorelDRAW篇 

   https://item.jd.com/13504674.html

科技绘图/科研论文图/论文配图设计与创作自学手册:Maya+PSP篇

   https://item.jd.com/13504686.html

科技绘图/科研论文图/论文配图设计与创作自学手册:科研动画篇

   https://item.jd.com/13048467.html#crumb-wrap

SCI图像语法-科技论文配图设计使用技巧

    https://item.jd.com/10073529532924.html?bbtf=1

微信图片_20220509133450.jpg

静远嘲风(MY Scimage) 成立于2007年,嘲风取自中国传统文化中龙生九子,子子不同的传说,嘲风为守护屋脊之瑞兽,喜登高望远;静远取自成语“宁静致远”,登高莫忘初心,远观而不可务远。

微信图片_20220512163044.jpg

学习更多绘图教程关注:

微信图片_20230620105059.jpg

最新2.jpg

转载本文请联系原作者获取授权,同时请注明本文来自宋元元科学网博客。

链接地址:https://wap.sciencenet.cn/blog-519111-1500256.html?mobile=1

收藏

分享到:

当前推荐数:1
推荐人:
推荐到博客首页
网友评论0 条评论
确定删除指定的回复吗?
确定删除本博文吗?