黄龙旺
[转载]基于Transformer对比学习的自动睡眠分期方法
2025-10-9 10:49
阅读:1610

基于Transformer对比学习的自动睡眠分期方法 

摘要 自动睡眠分期由于其在分析整晚多导睡眠(PSG)信号方面具有高效性,能够有效支持临床专家对睡眠障碍进行诊疗。然而,现有的研究主要集中在与实际临床数据不相同的公共数据集上。为了缩小理论模型与实际临床实践之间的差距,提出了一种新的深度学习模型,将视觉Transformer与监督对比学习相结合,实现有效的睡眠阶段分期。实验结果表明,该模型能够更有效地对多通道PSG信号进行分期。在两个公开的睡眠数据库上该模型平均F1得分分别为79.2%76.5%,优于之前的研究,表明了该模型强大的能力,在儿童小数据库上的平均准确率也达到了88.6%。提出的模型不仅在公共数据库上进行了验证,而且在提供的临床数据库上进行了验证,以严格评估其在临床实践中的使用情况。

关键词:睡眠分期,视觉Transformer,对比学习,多导睡眠信号

扫描二维码全文浏览

Cite this article

Ma, J., Ren, Z., Zhang, T. et al. Transformer-Based Contrastive Learning Method for Automated Sleep Stages Classification. J. Shanghai Jiaotong Univ. (Sci.) 30, 720–732 (2025). https://doi.org/10.1007/s12204-024-2734-z

转载本文请联系原作者获取授权,同时请注明本文来自黄龙旺科学网博客。

链接地址:https://wap.sciencenet.cn/blog-45888-1505173.html?mobile=1

收藏

当前推荐数:0
推荐到博客首页
网友评论0 条评论
确定删除指定的回复吗?
确定删除本博文吗?