2025年5月12日,国际知名期刊《Energy & Environmental Science》在线发表了云南师范大学能源与环境科学学院杨驰博士、云南大学张文华研究员、上海光源高兴宇、西北工业大学陈睿豪课题组在全无机钙钛矿太阳电池领域取得的最新研究成果《Molecular integration of Lewis bases for efficient and stable inverted perovskite solar cells》(中国科学院一区TOP,影响因子IF=42),云南师范大学能源与环境科学学院杨驰博士、云南大学张文华研究员、上海光源高兴宇、西北工业大学陈睿豪为共同通讯作者。
论文链接:https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee00383k
Abstract
The deliberate design of functional molecules holds substantial significance to passivate detrimental defects and enable fabrication of high-performance perovskite solar cells (PSCs). Nevertheless, a facile yet rigid approach for the systematic design and judicious selection of passivators remains to be established. In this study, we put forward a molecular integration strategy to identify a novel Lewis base molecule, namely dimethyl acetonylphosphonate (DMAPA), which incorporates the functional groups of previously reported Lewis base molecules of acetone (ACT) and trimethyl phosphate (TP). Theoretical computations demonstrate that the DMAPA molecule manifests a more advantageous interaction with perovskite crystals in comparison to ACT and TP ligands. Experimentally, the DMAPA molecule has been observed to surpass ACT and TP molecules in terms of mitigating trap densities and obtaining excellent device performance. These findings clearly substantiate the effectiveness of the molecular integration strategy. Concurrently, in situ characterization studies have elucidated that the DMAPA molecule can modulate the crystallization dynamics of halide perovskites and expedite the transformation of the intermediate phase into the perovskite black phase. Ultimately, the DMAPA-based p–i–n structured PSCs deliver a champion power conversion efficiency (PCE) of 25.59%, as well as remarkable stability. The unencapsulated cells retain over 85% of their initial performance after 1600 hours of annealing at 65 °C or 850 hours of operation under one-sun equivalent light illumination at the maximum power point (MPP) voltage. This work presents a simple yet effective methodology that effectively enriches the range of passivators, addressing the prevailing challenges associated with defect passivation in PSCs and advancing the field of perovskite technology.
拓展阅读:
https://solar.ynnu.edu.cn/info/1187/3340.htm
杨驰,助理研究员
主要招生专业
农业电气化与自动化、清洁能源技术
主要研究方向
半导体材料及光伏器件
教育背景
2009. 09 - 2015. 06,中国科学技术大学(中国科学院大连化学物理研究所 联合培养),材料科学与工程,博士
2005. 09 - 2009. 07,中国科学技术大学学士学位,材料科学与工程,学士
工作经历
2019. 05 - 2023.03,成都大学,高等研究院能源工程材料研究中心
2016. 01 - 2019. 04,中国工程物理研究院,化工材料研究所,博士后
近三年主持或参与的基金项目
国家自然科学基金青年项目, 22309163, 2024-01-01 至 2026-12-31, 30万元,主持
国家自然科学基金联合基金项目,2022-01-01至2025-12-31,260万,参与
近三年代表性研究成果
[1] C. Yang†, Z. J. Wang†, Y. H. Lv*, R. H. Yuan, Y. H. Wu, W.-H. Zhang*, Colloidal CsCu5S3 nanocrystals as an interlayer in high-performance perovskite solar cells with an efficiency of 22.29%. Chem. Eng. J., 2021, 406: 126855. (期刊论文)
[2] Z. J. Wang†, C. Yang†, P. N. He, J. Zhu, Q. Zhang, P. Zhao, X. C. Mao, F. J. Gou*, K. Zhang*, The synthesis of nano-fuzz W2N layer using dense helium and nitrogen plasma. Thin Solid Films, 2021, 717: 138445. (期刊论文)
[3] C. Yang*, Z.J. Wang, G. He, H. Z. Zhang, C. Liao, Pb2BiS2I3 Nanowires for Use in Photodetectors, ACS Appl. Nano Mater., 2022, 5: 16033. (期刊论文)
联系方式:
Yangchi0002@163.com
转载本文请联系原作者获取授权,同时请注明本文来自蒋金和科学网博客。
链接地址:https://wap.sciencenet.cn/blog-454141-1487568.html?mobile=1
收藏