相对论体系并没有完成
20世纪初,庞加莱把伽利略相对性原理推广到包含光速的洛伦兹变换和麦克斯韦理论;爱因斯坦提出光速不变原理。1905年建立的狭义相对论解释了“以太漂移”的零结果,发现同时性的相对性,并从新的角度导出了重要的质能关系等。现在,所有可忽略引力效应,与宇观尺度现象无关的宏观尺度上的实验和观测都与爱因斯坦、洛伦兹(H. A. Lorentz)和庞加莱的狭义相对论相符合。
为了描述引力,爱因斯坦又把牛顿引力中熟知的惯性质量等于引力质量提到等效原理的高度,并提出了时空弯曲由物质的能量-动量决定的引力场方程,建立了作为时空和引力理论的广义相对论。这个理论解释了牛顿引力所无法解释的水星近日点的进动,预言了光线偏折、光谱的引力红移等效应。
科学对于宇宙的认识也经历了巨大变革。1920年代末人们发现了河外星系的谱线红移;1940年代,在广义相对论宇宙学基础上提出了大爆炸宇宙模型,预言了微波背景辐射,解释了宇宙中轻元素的丰度等;1960年代微波背景辐射的发现证实了宇宙大爆炸理论。此后,在宇宙尺度上,牛顿绝对时空被抛弃,夜黑和引力佯谬迎刃而解。宇宙不是静止的、一成不变的,而是一个演化的整体,这是20世纪自然科学的最大成就之一。这些深刻改变着物理和哲学的时空观和宇宙观。
然而,相对论体系作为一个理论体系并没有完成。从前人继承下来的惯性和惯性运动的起源问题尽管有所发展,但并没有解决。1960年代末以来,发现广义相对论存在时空失去意义的“奇性”,宇宙起源于奇性,星系演化经过黑洞终结于奇性。黑洞不“黑”,任何有序物体掉进黑洞,都变成无序的热辐射发射出来,从而信息丢失。这不仅与物理学理论基础之一的量子力学薛定谔方程的概率流守恒矛盾,也与其他理论冲突。
温伯格的那段话与他对广义相对论和宇宙论具有代表性的观点密切相关,与爱因斯坦和通常广义相对论学者的几何观点完全不同。在该书的序言中,他写道:“这种几何观点在广义相对论和基本粒子物理之间造成人为隔阂。只要还能够指望,如爱因斯坦曾指望过的,物质最终可以用几何语言来理解,那么在描述引力理论时给黎曼(Riemann)几何以首要地位才是有意义的。但是现在,时间流逝已教导我们不能指望强作用、弱作用和电磁作用都可以用几何语言来理解。因而过分地强调几何,只能模糊引力理论与物理学其余部分之间的深刻联系。”他所采用的是基本粒子理论观点:“除非相应的经典场论服从等效原理,看来就不可能建立质量为零、自旋为2的粒子的任何洛伦兹协变的量子理论。这样,等效原理似乎就成了引力理论和基本粒子理论之间的最好的桥梁。”这些是他在1971年写下的。过了30多年,这种有代表性的从粒子物理观点解释广义相对论的尝试,在超弦理论的框架中有所进展,但是仍然远远没有完成。温伯格坚持这种观点的主要原因,是因为广义相对论和宇宙论中的物理量(如质量和自旋等)几乎全都依赖于狭义相对论。然而,假定的基础却有疑义。其实,只要考虑到宇观效应,狭义相对性原理就会被破坏,这是因为,所有实验室和天文台(包括用于科学探索的人造卫星)相对于宇宙尺度都是局部的,对于所有可以忽略引力,与宇观效应(如星系红移、微波背景辐射等)无关的实验和观测结果都与狭义相对性原理一致:没有优越的惯性参考系,时间和空间具有平移不变性,均匀各向同性等物理规律在具有十个参数的庞加莱群的变换下不变。然而,一旦进行天文观测,或者实验室的设备恰恰与微波背景辐射可以发生作用,那么,实验室观测者就会发现:相对于遥远的星系和微波背景辐射,实验室具有优越速度,时间平移不变性不再存在,所观测到的宇宙具有演化,时间具有箭头;以微波背景辐射为代表的三维宇宙空间大体上是均匀各向同性的。于是,局部实验和宇观效应的观测之间明显存在矛盾。在什么意义下可以把仅仅经过局部实验验证的物理量用到宇观效应观测结果的理论分析呢?如果温伯格的观点可以贯彻到底,就可以运用狭义相对论的观点来说明这一切。然而,奇性存在否定了这一企图;宇宙学常数的出现使渐近平坦时空区域不复存在。因此,仍以庞加莱不变性为依据,对宇观观测数据进行分析,特别对有关宇宙学常数数据的分析就存在疑义。
在一定意义上,微波背景辐射可以看成是“光子以太”。地球上实验室观测到的微波背景辐射应该扣除地球相对于微波背景辐射的运动,亦即相对于这类“光子以太”的漂移。于是,狭义相对性原理和宇宙学原理的佯谬可表述为:如果微波背景辐射在19世纪末就发现,在地球上就可测出相对于微波背景辐射的“光子以太”的漂移。那么,相对论体系会怎么办呢?
转载本文请联系原作者获取授权,同时请注明本文来自朱林科学网博客。
链接地址:https://wap.sciencenet.cn/blog-38228-1499365.html?mobile=1
收藏