郝丹萌
学习周报2025.4.28-2025.5.11
2025-7-16 16:47
阅读:178

习周报

姓名

郝丹萌

时间范围

2025.4.28-2025.5.11

周次

十七

研究方向

大模型高效参数微调

本周完成工作

1.写毕业设计论文。

2.学习搭建交互式对话界面,和参数高校微调模型的前端界面。

本周

问题汇报

下周工作计划

 1.修改毕业设计论文格式和内容

 2.学习微调相关知识。

Ollama 安装和常用系统参数设置

在官网首页,我们可以直接下载Ollama安装程序(支持 Windows/MacOS/Linux):https://ollama.com/

Ollama的安装过程,与安装其他普通软件并没有什么两样,安装完成之后,有几个常用的系统环境变量参数建议进行设置:

  1. OLLAMA_MODELS:模型文件存放目录,默认目录为当前用户目录(Windows 目录:C:\Users%username%.ollama\models,MacOS 目录:~/.ollama/models,Linux 目录:/usr/share/ollama/.ollama/models),如果是 Windows 系统建议修改(如:D:\OllamaModels),避免 C 盘空间吃紧

  2. OLLAMA_HOST:Ollama 服务监听的网络地址,默认为127.0.0.1,如果允许其他电脑访问 Ollama(如:局域网中的其他电脑),建议设置0.0.0.0,从而允许其他网络访问

  3. OLLAMA_PORT:Ollama 服务监听的默认端口,默认为11434,如果端口有冲突,可以修改设置成其他端口(如:8080等)

  4. OLLAMA_ORIGINS:HTTP 客户端请求来源,半角逗号分隔列表,若本地使用无严格要求,可以设置成星号,代表不受限制

  5. OLLAMA_KEEP_ALIVE:大模型加载到内存中后的存活时间,默认为5m即 5 分钟(如:纯数字如 300 代表 300 秒,0 代表处理请求响应后立即卸载模型,任何负数则表示一直存活);我们可设置成24h,即模型在内存中保持 24 小时,提高访问速度

  6. OLLAMA_NUM_PARALLEL:请求处理并发数量,默认为1,即单并发串行处理请求,可根据实际情况进行调整

  7. OLLAMA_MAX_QUEUE:请求队列长度,默认值为512,可以根据情况设置,超过队列长度请求被抛弃

  8. OLLAMA_DEBUG:输出 Debug 日志标识,应用研发阶段可以设置成1,即输出详细日志信息,便于排查问题

  9. OLLAMA_MAX_LOADED_MODELS:最多同时加载到内存中模型的数量,默认为1,即只能有 1 个模型在内存中

Ollama 管理本地已有大模型

【展示本地大模型列表:ollama list】

>ollama listNAME            ID              SIZE    MODIFIEDgemma2:9b       c19987e1e6e2    5.4 GB  7 days agoqwen2:7b        e0d4e1163c58    4.4 GB  10 days ago

可以看到,老牛同学本地有 2 个大模型,它们的名称(NAME)分别为gemma2:9bqwen2:7b

【删除单个本地大模型:ollama rm 本地模型名称】

>ollama rm gemma2:9bdeleted 'gemma2:9b'>ollama listNAME            ID              SIZE    MODIFIEDqwen2:7b        e0d4e1163c58    4.4 GB  10 days ago

老牛同学通过rm命令删除了gemma2:9b大模型之后,再次通过list命令查看,本地只有qwen2:7b一个大模型了。

【启动本地模型:ollama run 本地模型名】

>ollama run qwen2:0.5b>>>

启动成功之后,就可以通过终端对话界面进行对话了(本命令下面也会讲到,其他详细暂且忽略)

【查看本地运行中模型列表:ollama ps】

>ollama psNAME            ID              SIZE    PROCESSOR       UNTILqwen2:0.5b      6f48b936a09f    693 MB  100% CPU        4 minutes from now

通过ps命名可以看到,老牛同学本地qwen2:0.5b大模型正在运行中。

【复制本地大模型:ollama cp 本地存在的模型名 新复制模型名】

>ollama cp qwen2:0.5b Qwen2-0.5Bcopied 'qwen2:0.5b' to 'Qwen2-0.5B'>ollama listNAME                    ID              SIZE    MODIFIEDQwen2-0.5B:latest       6f48b936a09f    352 MB  4 seconds agoqwen2:0.5b              6f48b936a09f    352 MB  29 minutes agoqwen2:7b                e0d4e1163c58    4.4 GB  10 days ago

上面cp命令,老牛同学把本地qwen2:0.5b复制了一份,新模型名为Qwen2-0.5B

下面老牛同学介绍三种通过 Ollama 下载到本地大模型方式:

  1. 方式一:直接通过 Ollama 远程仓库下载,这是最直接的方式,也是最推荐、最常用的方式

  2. 方式二:如果已经有 GGUF 模型权重文件了,不想重新下载,也可以通过 Ollama 把该文件直接导入到本地(不推荐、不常用)

  3. 方式三:如果已经有 safetensors 模型权重文件,也不想重新下载,也可以通过 Ollama 把该文件直接导入到本地(不推荐、不常用)

方式一:Ollama 从远程仓库下载大模型到本地

【下载或者更新本地大模型:ollama pull 本地/远程仓库模型名称】

本pull命令从 Ollama 远程仓库完整下载或增量更新模型文件,模型名称格式为:模型名称:参数规格;如ollama pull qwen2:0.5b 则代表从 Ollama 仓库下载qwen2大模型的0.5b参数规格大模型文件到本地磁盘:

如果参数规格标记为latest则代表为默认参数规格,下载时可以不用指定,如Qwen27b被标记为latest,则ollama pull qwen2和ollama pull qwen2:7b这 2 个命令的意义是一样的,都下载的为7b参数规格模型。为了保证后续维护方便、避免误操作等,老牛同学建议不管是否为默认参数规格,我们下载命令中均明确参数规格。

值得一提的是,今天开始GLM4支持 Ollama 部署和推理,老牛同学特意列出它的下载命令:ollama pull glm4:9b(和其他模型相比,其实并没有特殊支出)。需要注意的是:Ollama 最低版本为0.2.0才能支持GLM4大模型!

若本地不存在大模型,则下载完整模型文件到本地磁盘;若本地磁盘存在该大模型,则增量下载大模型更新文件到本地磁盘。

从上面最后的list命令结果可以看到,老牛同学本地存在了qwen2:0.5b这个名称的大模型。

【下载且运行本地大模型:ollama run 本地/远程仓库模型名称】

>ollama run qwen2:0.5b>>>

若本地不存在大模型,则下载完整模型文件到本地磁盘(类似于pull命令),然后启动大模型;若本地存在大模型,则直接启动(不进行更新)。

启动成功后,默认为终端对客界面:

  1. 若需要输入多行文本,需要用三引号包裹,如:"""这里是多行文本"""

  2. /clear清除对话上下文信息

  3. /bye则退出对话窗口

  4. /set parameter num_ctx 4096可设置窗口大小为 4096 个 Token,也可以通过请求设置,如:curl <http://localhost:11434/api/generate> -d '{ "model": "qwen2:7b", "prompt": "Why is the sky blue?", "options": { "num_ctx": 4096 }}'

  5. /show info可以查看当前模型详情:

  6. 方式二:Ollama 导入 GGUF 模型文件到本地磁盘

若我们已经从 HF 或者 ModeScope 下载了 GGUF 文件(文件名为:Meta-Llama-3-8B-Instruct.Q4_K_M.gguf),在我们存放Llama3-8B的 GGUF 模型文件目录中,创建一个文件名为Modelfile的文件,该文件的内容如下:

FROM ./Meta-Llama-3-8B-Instruct.Q4_K_M.gguf

然后,打开终端,执行命令导入模型文件:ollama create 模型名称 -f ./Modelfile

>ollama create Llama-3-8B -f ./Modelfiletransferring model datausing existing layer sha256:647a2b64cbcdbe670432d0502ebb2592b36dd364d51a9ef7a1387b7a4365781fcreating new layer sha256:459d7c837b2bd7f895a15b0a5213846912693beedaf0257fbba2a508bc1c88d9writing manifestsuccess

导入成功之后,我们就可以通过list命名,看到名为Llama-3-8B的本地模型了,后续可以和其他模型一样进行管理了。

方式三:Ollama 导入 safetensors 模型文件到到本地磁盘

官方操作文档:https://ollama.fan/getting-started/import/#importing-pytorch-safetensors

若我们已经从 HF 或者 ModeScope 下载了 safetensors 文件(文件目录为:Mistral-7B),

git lfs install
git clone https://www.modelscope.cn/rubraAI/Mistral-7B-Instruct-v0.3.git Mistral-7B

然后,我们转换模型(结果:Mistral-7B-v0.3.bin):

python llm/llama.cpp/convert.py ./Mistral-7B --outtype f16 --outfile Mistral-7B-v0.3.bin

接下来,进行量化量化:

llm/llama.cpp/quantize Mistral-7B-v0.3.bin Mistral-7B-v0.3_Q4.bin q4_0

最后,通过 Ollama 导入到本地磁盘,创建Modelfile模型文件:

FROM Mistral-7B-v0.3_Q4.bin

执行导入命令,导入模型文件:ollama create 模型名称 -f ./Modelfile

>ollama create Mistral-7B-v0.3 -f ./Modelfiletransferring model datausing existing layer sha256:647a2b64cbcdbe670432d0502ebb2592b36dd364d51a9ef7a1387b7a4365781fcreating new layer sha256:459d7c837b2bd7f895a15b0a5213846912693beedaf0257fbba2a508bc1c88d9writing manifestsuccess

导入成功之后,我们就可以通过list命名,看到名为Mistral-7B-v0.3的本地模型了,后续可以和其他模型一样进行管理了。

基于 WebUI 部署 Ollama 可视化对话界面

Ollama自带控制台对话界面体验总归是不太好,接下来部署 Web 可视化聊天界面:

  1. 下载并安装 Node.js 工具:https://nodejs.org/zh-cn

  2. 下载ollama-webui工程代码:git clone https://github.com/ollama-webui/ollama-webui-lite ollama-webui

  3. 切换ollama-webui代码的目录:cd ollama-webui

  4. 设置 Node.js 工具包镜像源(下载提速):npm config set registry http://mirrors.cloud.tencent.com/npm/

  5. 安装 Node.js 依赖的工具包:npm install

  6. 最后,启动 Web 可视化界面:npm run dev

如果看到以上输出,代表 Web 可视化界面已经成功了!

浏览器打开 Web 可视化界面:http://localhost:3000/

Ollama 客户端:HTTP 访问服务

Ollama 默认提供了generate和chat这 2 个原始的 API 接口,使用方式如下:

  1. generate接口的使用样例:

curl http://localhost:11434/api/generate -d "{'model': 'qwen:0.5b','prompt': '为什么天空是蓝色的?'}"

  1. chat接口的使用样例:

curl http://localhost:11434/api/chat -d '{"model": "qwen:7b","messages": [{ "role": "user", "content": "为什么天空是蓝色的?" }]}'

接下来的PythonJava客户端应用,都是对这 2 个接口的封装。

Ollama 客户端:Python API 应用

我们把 Ollama 集成到 Python 应用中,只需要以下简单 2 步即可:

第一步,安装 Python 依赖包:

pip install ollama

第二步,使用 Ollama 接口,stream=True代表按照流式输出:

import ollama
# 流式输出
def api_generate(text:str):
print(f'提问:{text}')
stream = ollama.generate(
stream=True,
model='qwen:7b',
prompt=text,
)
print('-----------------------------------------')
for chunk in stream:
if not chunk['done']:
print(chunk['response'], end='', flush=True)
else:
print('\n')
print('-----------------------------------------')
print(f'总耗时:{chunk['total_duration']}')
print('-----------------------------------------')
if __name__ == '__main__':
# 流式输出
api_generate(text='天空为什么是蓝色的?')
# 非流式输出
content = ollama.generate(model='qwen:0.5b', prompt='天空为什么是蓝色的?')
print(content)

Ollama 客户端:Java API 应用(SpringBoot 应用)

我们也可以把 Ollama 集成到 SpringBoot 应用中,只需要以下简单 3 步即可:

第一步,在总pom.xml中新增 SpringBoot Starter 依赖:

<dependency><groupId>io.springboot.ai</groupId><artifactId>spring-ai-ollama-spring-boot-starter</artifactId><version>1.0.0</version></dependency>

第二步,在 SpringBoot 配置文件application.properties中增加 Ollama 配置信息:

server.port=8088spring.application.name=NTopicBootXspring.ai.ollama.base-url=http://localhost:11434spring.ai.ollama.chat.options.model=qwen:0.5b

配置文件指定了 Ollama API 地址和端口,同时指定了默认模型qwen:0.5b(注意:模型需要在本地已经存在)

第三步,使用OllamaChatClient进行文字生成或者对话:

import org.springframework.ai.chat.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatClient;
import org.springframework.ai.ollama.api.OllamaOptions;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
@RestController
public class OllamaClientController {
@Autowired
@Qualifier("ollamaChatClient")
private OllamaChatClient ollamaChatClient;
/**
    * http://localhost:8088/ollama/chat/v1?msg=天空为什么是蓝色的?
    */
@GetMapping("/ollama/chat/v1")
public String ollamaChat(@RequestParam String msg) {
return this.ollamaChatClient.call(msg);
}
/**
    * http://localhost:8088/ollama/chat/v2?msg=人为什么要不断的追求卓越?
    */
@GetMapping("/ollama/chat/v2")
public Object ollamaChatV2(@RequestParam String msg) {
Prompt prompt = new Prompt(msg);
ChatResponse chatResponse = ollamaChatClient.call(prompt);
return chatResponse;
}
/**
    * http://localhost:8088/ollama/chat/v3?msg=你认为老牛同学的文章如何?
    */
@GetMapping("/ollama/chat/v3")
public Object ollamaChatV3(@RequestParam String msg) {
Prompt prompt = new Prompt(
msg,
OllamaOptions.create()
.withModel("qwen:0.5b")
.withTemperature(0.4F));
ChatResponse chatResponse = ollamaChatClient.call(prompt);
return chatResponse.getResult().getOutput().getContent();
}
}

转载本文请联系原作者获取授权,同时请注明本文来自郝丹萌科学网博客。

链接地址:https://wap.sciencenet.cn/blog-3622922-1493953.html?mobile=1

收藏

分享到:

当前推荐数:0
推荐到博客首页
网友评论0 条评论
确定删除指定的回复吗?
确定删除本博文吗?