刘跃
推翻现行微波吸收理论的波动力学新理论的文章的他引情况
2025-7-12 05:29
阅读:382

1 绝大对数微波吸收论文没有考虑反对理论

自2027年微波吸收材料的波动力学新理论文章见刊后,微波吸收材料的文章还与以往一样,大量发表在各级各类期刊上,说明微波吸收材料是现代科学界的一个很有热度的研究领域。

这些文章中绝大对数在继续坚持被批评是错误的现行微波吸收理论,只字不提新出现的反对理论(这是有证可查的事实)。

这种情况似乎有些违反科学研究原则。

按照著名物理学家Richard Feynman的观点,任何不考虑反方证据的研究很可能是Cargo Cult Science:

"Cargo Cult Science" - by Richard Feynman

Cargo Cult Science

M. Hanlon

European Review 2013 Vol. 21 Issue S1 Pages S51-S55

DOI: 10.1017/s1062798713000124

从反对理论文章的查阅和下载数据,以及发表期刊的级别和期刊分布情况看,

大多数相关研究的作者、编辑、审稿人是看到了反对观点的。

这样就有两种结果:

(1)现行微波吸收理论是对的,新提出的微波吸收的波动力学理论是错的;

(2)现行微波吸收理论确实错了,新提出的微波吸收的波动力学理论是对的。

如果(2)成立,现行微波吸收研究就处在很尴尬的情况了。

为了让(1)成立,坚持现行微波吸收的主流科学家有责任在发表的文章中对反对理论进行批判,

因为反对理论意见已经在很多有影响的期刊发表了反对观点,反对观点的影响不可谓不大。

2 仅有少数微波吸收文章引用了反对理论

2.1 正面引用文章

1

https://www.sciencedirect.com/science/article/pii/S0264127525006409?via%3Dihub

Materials & Design

Volume 255, July 2025, 114220

Ultra-wideband electromagnetic wave absorption in mmWave using dual-loss engineered M-type hexaferrite: A wave cancellation approach

[25] Y. Liu, X. Yin, M.G.B. Drew, Y. Liu, Microwave absorption of film explained accurately by wave cancellation theory, Physica B: Condensed Matter, 666 (2023) 415108. https://doi.org/10.1016/j.physb.2023.415108

[27] Y. Liu, Y. Ding, Y. Liu, M.G.B. Drew, Unexpected results in microwave absorption – part 1: different absorption mechanisms for metal-backed film and for material, Surfaces and Interfaces, 40 (2023) 103022. https://doi.org/10.1016/j.surfin.2023.103022

[28] Y. Liu, Y. Ding, Y. Liu, M.G.B. Drew, Unexpected results in microwave absorption – Part 2: Angular effects and the wave cancellation theory, Surfaces and Interfaces, 40 (2023) 103024. https://doi.org/10.1016/j.surfin.2023.103024

2

https://www.sciencedirect.com/science/article/abs/pii/S0925838825019425?via%3Dihub

Journal of Alloys and Compounds

Volume 1026, 5 May 2025, 180381

Evolution of electron localization with Co2+ variations in CoxFe3xO4 hollow spheres for enhanced wave absorption

[65] Y. Liu, Y. Liu, M.G.B. Drew, A theoretical investigation on the quarter-wavelength model - Part 1: The Analysis, Phys. Scr. 96 (2021) 12.

[66] Y. Liu, Y. Liu, M.G.B. Drew, A theoretical investigation of the quarter-wavelength model - part 2: verification and extension, Phys. Scr. 97 (2022) 015806.

[67] Y. Liu, X. Yin, M.G.B. Drew, Y. Liu, Microwave absorption of film explained accurately by wave cancellation theory, Physica B: Condensed Matter, 666 (2023) 415408.

3

https://onlinelibrary.wiley.com/doi/10.1002/smll.202305277

Small    Volume20, Issue2  January 11, 2024    2305277

The Developed Wave Cancellation Theory Contributing to Understand Wave Absorption Mechanism of ZIF Derivatives with Controllable Electromagnetic Parameters

https://ieeexplore.ieee.org/document/10606232

Advances in Polymer-Based Microwave Absorbers—From Design Principles to Technological Breakthroughs: A Review

[37] Y. Liu, Y. Liu, and M. G. B. Drew, “Wave mechanics of microwave absorption in films: A short review,” Opt. Laser Technol., vol. 178, Nov. 2024, Art. no. 111211.

[38] Y. Liu, X. Yin, M. G. B. Drew, and Y. Liu, “Microwave absorption of film explained accurately by wave cancellation theory,” Phys. B, Condens. Matter, vol. 666, Oct. 2023, Art. no. 415108.

4

https://ieeexplore.ieee.org/document/10606232

IEEE Journal on Flexible Electronics ( Volume: 3, Issue: 9, September 2024)

Advances in Polymer-Based Microwave Absorbers—From Design Principles to Technological Breakthroughs: A Review

[37] Y. Liu, Y. Liu, and M. G. B. Drew, “Wave mechanics of microwave absorption in films: A short review,” Opt. Laser Technol., vol. 178, Nov. 2024, Art. no. 111211.

[38] Y. Liu, X. Yin, M. G. B. Drew, and Y. Liu, “Microwave absorption of film explained accurately by wave cancellation theory,” Phys. B, Condens. Matter, vol. 666, Oct. 2023, Art. no. 415108.

5)

https://link.springer.com/chapter/10.1007/978-3-030-62226-8_13

Functional Properties of Advanced Engineering Materials and Biomolecules  2021 Chapter

Synthesis, Properties, and Applications of Iron Oxides:  Versatility and Challenges

167. Liu, Y., Zhao, K., Drew, M.G.B., Liu, Y.A.: Theoretical and practical clarification on the calculation ofreflection loss for microwave absorbing materials. AIPAdv. 8(1) (2018). https:// doi.org/10.1063/1.4991448

168. Liu, Y., Drew, M.G.B., Li, H., Liu, Y.: An experimental and theoretical investigation into methods concerned with “reflection loss” for microwave absorbing materials. Mater. Chem. Phys. 243 (2020). https://doi.org/10.1016/j.matchemphys.2020.122624

6

https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202504489

Advanced Science 2025

Microwave-Driven Dielectric-Magnetic Regulation of Graphite@α-MnO2 Toward Enhanced Electromagnetic Wave Absorption

[35] Y. Liu, Y. Liu, M. G. B. Drew, Phys. Scr. 2021, 96, 125003.

2.2 中立引用文章

1

https://onlinelibrary.wiley.com/doi/10.1002/pssa.202300828

physica status solidi (a)  Volume221, Issue4  February 2024   2300828

Theory, Modeling, Measurement, and Testing of Electromagnetic Absorbers: A Review

[11] Y. Liu, M. G. Drew, Y. Liu, J. Appl. Phys. 2023, 134,4.

[14] Y. Liu, Y. Liu, M. G. Drew, Mater. Chem. Phys. 2022, 290, 126576.

[15] Y. Liu, Y. Liu, M. G. Drew, Mater. Chem. Phys. 2022, 290, 126521.

[16] Y. Liu, Y. Liu, M. G. Drew, Mater. Chem. Phys. 2022, 291, 126601.

[21] Y. Liu, Y. Ding, Y. Liu, M. G. Drew, Surf. Interfaces 2023, 40, 103022.

[22] Y. Liu, Y. Ding, Y. Liu, M. G. Drew, Surf. Interfaces 2023, 40, 103024.

[23] Y. Liu, Y. Liu, M. Drew, J. Appl. Phys. 2023, 134, 5303.

[24] Y. Liu, X. Yin, M. G. Drew, Y. Liu, Physica B 2023, 666, 415108.

[25] Y. Liu, Y. Liu, M. G. Drew, Mater. Chem. Phys. 2022, 291, 126601.

[34] Y. Liu, Y. Lin, K. Zhao, M. G. Drew, Y. Liu, Mater. Chem. Phys. 2020, 243, 122615.

[101] Y. Liu, R. Tai, M. G. Drew, Y. Liu, J. Supercond. Novel Magn. 2017, 30, 2489.

Sci. 2019, 1, 398.

[104] Y. Liu, K. Zhao, M. Drew, Y. Liu, AIP Adv. 2018, 8, 5223.

[107] Y. Liu, Y. Liu, M. G. B. Drew, Mater. Chem. Phys. 2022, 291, 126601.

2

https://www.sciencedirect.com/science/article/abs/pii/S1005030222004534?via%3Dihub

Journal of Materials Science & Technology

Volume 130, 10 December 2022, Pages 136-156

[76] Y. Liu, Y. Liu, M.G.B. Drew, Phys. Scr. 96 (2021) 125003.

[77] Y. Liu, Y. Liu, M.G.B. Drew, Phys. Scr. 97 (2022) 015806.

3

Journal of Colloid and Interface Science

Available online 19 June 2025, 138210

The new insight into the microscopic enhancement mechanism of microwave absorption based on the electromagnetic heterogeneous interface of carbon nanocavity

  • Y. Liu et      al.

Microwave absorption of film explained accurately by wave cancellation theory

Phys. B Condens. Matter

(2023)

  • Y. Liu et      al.

Wave mechanics of microwave absorption in films - distinguishing film from material

J. Magn. Magn. Mater.

(2024)

  • Y. Liu et      al.

Unexpected results in microwave absorption-part 1: different absorption mechanisms for metal-backed film and for material

Surf. Interfaces

(2023)

 2.3 反对引用文章

1

https://www.sciencedirect.com/science/article/pii/S2352847819300735?via%3Dihub

Journal of Materiomics

Volume 5, Issue 4, December 2019, Pages 503-541

Recent progress of nanomaterials for microwave absorption

[102] Liu Y, Zhao K, Drew MGB, Liu Y. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Adv 2018;8:015223.

2.4 不计入引用的引用

有一些文章引用了反对文章,但是不是引用文章中的反对观点。这些引用不计入引用文章。

3 邀请

欢迎评论区提供博主没有看到的文章,特别是反对引用文章,谢谢!。

转载本文请联系原作者获取授权,同时请注明本文来自刘跃科学网博客。

链接地址:https://wap.sciencenet.cn/blog-3589443-1493361.html?mobile=1

收藏

分享到:

下一篇
当前推荐数:7
推荐到博客首页
网友评论0 条评论
确定删除指定的回复吗?
确定删除本博文吗?