ChinesePhysicsB的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsB

博文

[转载]CPB封面文章和亮点文章 | 2023年第2期

已有 730 次阅读 2023-3-31 15:11 |系统分类:论文交流|文章来源:转载

1.jpg

封面文章.png

Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation

Xuanhao Fu(傅宣豪) and Xin Zhou(周昕)

Chin. Phys. B, 2023, 32 (2):  028202

文章亮点介绍.png

作为我们熟知的现象,自然界中水在过冷条件(0℃以下)结冰,一般都是由与水相互作用的其他材料(基底或杂质)促进冰晶成核诱导发生。不同材料表面微观性质结构不同,对过冷水冰晶成核的影响差别巨大,导致冰晶成核温度从很高(非常接近零度)到低至零下30℃-40℃不等。而理解材料复杂多样的各种特征与其促进冰成核能力的关系,对材料、物理、生物、气候与环境等学科有重要意义,是相关领域长期以来的研究热点。通常认为,晶体材料表面与冰晶格匹配(如AgI)能很强促进冰核形成,但更多发现表明许多有非常类似冰结构的材料(如CuBr等)仅有非常弱的促冰能力。近年来,大量实验与模拟研究聚焦这个问题,发现不仅仅是材料表面的晶格结构,许多其他特征,如原子种类、带电性或极性、微纳米结构、表面粗糙度、柔性等众多因素都能对冰成核有复杂影响,虽总结出一些经验性规律,但缺乏普遍性结论。


本文基于分子动力学模拟,研究了几百种参数不同的晶体表面的结冰能力,发现表面各种细节结构对水结冰影响的敏感性与其晶格对冰晶的匹配性不同有很大关系。当材料表面晶格结构与冰晶不匹配时,表面对水分子的平均相互作用能决定冰成核,有普适关系,而与表面的众多细节特征无直接关系;但当表面晶格与冰晶匹配时,情况有很大不同,此时甚至表面原子与水分子间的相互作用函数细节都可能敏感调制水结冰发生。


研究材料表面结构及与水分子间相互作用调制冰晶成核的机理,对理解水的性质结构这一基本科学问题,以及发展设计防结冰材料等应用有重要意义。本文结果加深了对这个领域的认识,对进一步发展普适模型,统一理解各种材料表面纷繁复杂的结冰规律有重要帮助。

原文链接

PDF

2.png

Fig. 2. Ice nucleation temperature on surfaces with various structure, interaction strength, and interaction function forms. (a) SW potential and (b) LJ potential. Different colors are used to indicate various (lattice) structure (red: hexagon; blue: square; green: triangle). Different symbols distinguish various distance between nearest neighboring atoms (a = 0.7–1.3, in units of a0=0.142  nm) in both (a) and (b). The cyan area shows the occurred temperature of homogeneous ice nucleation, the magenta and yellow areas show the ranges of the ice nucleation temperature on the surfaces with the SW and LJ potentials, respectively. To make the results more readable, the data points of SW are shaded in (b) and only the magenta area is kept. 


亮点文章.png

A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2

Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰)

Chin. Phys. B, 2023, 32 (2):  027201

文章亮点介绍.png

范德华层状磁性材料对下一代自旋电子器件至关重要。探索新的相结构和磁性调控方法将促进自旋电子学的发展。铬基硫族化合物1T-CrTe2由于其室温磁性引起了人们的极大研究兴趣。范德华层状磁性材料1T-CrTe2通常表现为具有P-3m1空间群的三方相结构。本文预测了一种具有C2/m空间群的新奇单斜相结构,并发现可以通过改变空穴掺杂浓度来实现结构调控,同时伴随着铁磁性到反铁磁性的转变。研究表明,空穴掺杂会导致三方相出现晶格不稳定性,而单斜相始终保持晶格稳定性。空穴掺杂引起的磁性变化源于Cr-Cr直接交换相互作用和Cr-Te-Cr超交换相互作用之间的竞争机制。该工作为范德华层状磁性材料的相结构与磁性调控提供了新的思路。

原文链接

PDF

3.png

Fig. 1. Two crystal structures of bulk 1T-CrTe2 along different axes, [(a), (c)] trigonal (P-3m1 phase group) and [(b), (d)] monoclinic (C2/m phase group) structure. The black dashed lines denote the primitive cell. The pink solid lines highlight the hexagons formed by three Te atoms and three Cr atoms and centered by a Te atom. The brown arrows denote the spin directions of the Cr atoms. Phonon dispersion of (e) tr-CrTe2 and (f) m-CrTe2. All phonon modes are stable for both structures.


亮点文章.png

Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films

Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬)

Chin. Phys. B, 2023, 32 (2):  027501

文章亮点介绍.png

石榴石型铁氧体Y3Fe5O12(YIG)兼具诸多优越的特性,如化学稳定性、低阻尼系数、较强的磁性、绝缘等。这些特性使YIG成为研究自旋电子学效应的理想载体。近年来发现的自旋霍尔效应(SHE)、逆自旋霍尔效应(ISHE)、自旋霍尔磁阻(SMR)等新奇自旋电子学现象均在YIG薄膜异质结中被发掘和广泛研究。而基于YIG的自旋电子器件的性能则强烈依赖于YIG层中磁矩的取向。特别是垂直磁各向异性(PMA)的实现可以为自旋电子器件提供更好的热稳定性和更低的功耗。因此,研究高质量、低磁损耗YIG薄膜的生长条件并有效调控YIG薄膜的磁各向异性对其实际应用具有重要意义。


为解决这些问题,作者通过对YIG和Bi:YIG薄膜的磁各向异性进行深入研究,系统揭示了铁氧体薄膜中应力和掺杂物种对磁各向异性的协同影响机制。作者首先探讨了低磁损耗YIG外延薄膜的生长条件,采用脉冲激光沉积技术在一系列(111)面石榴石衬底上生长了YIG和Bi:YIG薄膜。通过实验发现较大的张应力能够诱导出垂直磁各向异性(PMA),而压缩应力则有助于产生磁化易平面(MEP)。这说明了应力调控对磁各向异性的影响显著。接着,作者对YIG进行了Bi掺杂(BiY2Fe5O12,简称为Bi:YIG),并进行了对照实验。结果发现,Bi掺杂可以显著提高磁各向异性的应变可调性,同时仍可保持超低磁损耗特性。这意味着通过应力和化学掺杂的协同作用可以实现对石榴石型铁氧体磁各向异性的有效控制。


总之,本研究通过系统地研究YIG和Bi:YIG外延薄膜的生长条件、应力调控以及化学掺杂对磁各向异性的影响,为实现石榴石型铁氧体薄膜和异质结构中磁各向异性的有效控制提供了重要指导。此外,本研究还发现,决定磁各向异性的关键参数是沿薄膜外延方向的菱形畸变。这些实验结果为未来进一步优化石榴石型铁氧体异质结构的生长条件和材料性能提供了宝贵的经验,对于开发具有高度可控磁性能和低能耗的铁氧体基自旋电子器件具有重要意义。

原文链接

PDF

4.png

Fig.5 . The out-of-plane lattice constant d[111] dependent magnetocrystalline anisotropy Klattice of YIG and Bi:YIG epitaxial films for various film thicknesses.


亮点文章.png

Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet

Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜)

Chin. Phys. B, 2023, 32 (2):  027505

文章亮点介绍.png

磁斯格明子是一种具有新奇物理特性的拓扑自旋结构,因其优异的磁动力学性能而备受关注。磁泡畴作为磁斯格明子的前辈,虽然拓扑平庸,但与磁斯格明子在结构、特性上具有很多相似之处。本文在Bi掺杂的钇铁石榴石Bi-YIG(111)薄膜中,利用磁光克尔显微镜系统性地研究了其中磁泡畴形态随外加垂直磁场的演化行为。随着外磁场降低,磁泡畴形状从圆形到三角形再到六边形演化,并呈现规则的六角格子排布。此外,三角形磁泡畴在外场变化下可发生类随机旋转现象。通过材料体系的磁各向异性分析,本工作发现Bi-YIG(111)材料中存在的面内六度磁各向异性与三角形磁泡畴形状及其随机翻转有关。对石榴石材料体系中磁泡畴形态的研究,可为磁斯格明子的形态及动力学研究提供参考,有助于磁斯格明子的未来应用。

原文链接

PDF

5.jpg

Fig. 3. Field-dependent morphologies of the magnetic bubbles. The applied out-of-plane magnetic fields Hz are indicated in each image. Dashed line frames with different shapes and colors are shown to illustrate the bubble morphologies.


公用专题推荐.png

TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B

TOPICAL REVIEW — Physics in micro-LED and quantum dots devices

TOPICAL REVIEW — The third carbon: Carbyne with one-dimensional sp-carbon

SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems

SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University

TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids

TOPICAL REVIEW — Progress in thermoelectric materials and devices

SPECIAL TOPIC — Emerging photovoltaic materials and devices

SPECIAL TOPIC — Organic and hybrid thermoelectrics

SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials

SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies

SPECIAL TOPIC — Non-Hermitian physics

SPECIAL TOPIC — Unconventional superconductivity

SPECIAL TOPIC — Two-dimensional magnetic materials and devices

SPECIAL TOPIC — Ion beam modification of materials and applications

SPECIAL TOPIC — Quantum computation and quantum simulation

SPECIAL TOPIC —Twistronics

SPECIAL TOPIC — Machine learning in condensed matter physics

SPECIAL TOPIC — Phononics and phonon engineering

SPECIAL TOPIC — Water at molecular level

SPECIAL TOPIC — Optical field manipulation

SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids

SPECIAL TOPIC —Terahertz physics

SPECIAL TOPIC — Ultracold atom and its application in precision measurement

SPECIAL TOPIC — Topological 2D materials

SPECIAL TOPIC — Active matters physics

SPECIAL TOPIC — Physics in neuromorphic devices

SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Quantum dot displays

TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery

SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang

TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang

SPECIAL TOPIC — Strong-field atomic and molecular physics

TOPICAL REVIEW — Strong-field atomic and molecular physics

TOPICAL REVIEW — Topological semimetals

SPECIAL TOPIC — Topological semimetals

SPECIAL TOPIC — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Fundamental research under high magnetic fields

Virtual Special Topic — High temperature superconductivity

Virtual Special Topic — Magnetism and Magnetic Materials


公用底.png

长按二维码,关注我们

官网:http://cpb.iphy.ac.cn

https://iopscience.iop.org/journal/1674-1056





https://wap.sciencenet.cn/blog-3377544-1382478.html

上一篇:[转载]热点专题 | 第三种碳:一维碳链材料
下一篇:[转载]CPB2023年第2期编辑推荐文章
收藏 IP: 159.226.35.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-10 07:14

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部