不膨胀的金属
诸平
Metal usually expands when heated Metal usually expands when heated
https://www.myscience.org/en/news/2025/the_metal_that_does_not_expand-2025-tuwien
https://www.tuwien.at/en/tu-wien/news/news-articles/news/das-metall-das-sich-nicht-ausdehnt
热胀冷缩是一条物理学定律。但是,奥地利维也纳理工大学(Vienna University of Technology简称TU Wien)网站2025年2月3日提供的消息,研究人员已经发现了不膨胀的金属(The metal that does not expand)。被认为是材料研究上的突破,这种不膨胀的金属材料是一种由几种金属组成的合金,在很大的温度范围内几乎没有热膨胀。(Breakthrough in materials research: an alloy of several metals has been developed that shows practically no thermal expansion over an extremely large temperature interval.)大多数金属在温度升高时膨胀。以埃菲尔铁塔(Eiffel Tower)为例,由于它的热膨胀,它在夏天比冬天高10~15 cm。然而,对于许多技术应用来说,这种效果是非常不可取的。由于这个原因,长期以来一直在寻找无论温度如何都具有相同长度的材料。例如,英瓦尔(Invar)是一种铁和镍的合金,因其极低的热膨胀而闻名。然而,直到现在,人们还不完全清楚这种性质是如何从物理上解释的。
现在,奥地利维也纳理工大学(TU Wien)的理论研究人员和中国北京科技大学(University of Science and Technology Beijing)的实验人员之间的合作取得了决定性的突破:使用复杂的计算机模拟,已经有可能详细了解因瓦尔效应(invar effect),从而开发出所谓的焦绿石磁铁(pyrochlore magnet)——一种比因瓦尔具有更好热膨胀性能的合金。在超过400开尔文(400 K)的极宽温度范围内,它的长度每开尔文只变化约万分之一。
热膨胀及其拮抗剂(Thermal expansion and its antagonist)
维也纳理工大学维也纳科学集群(VSC)研究中心{Vienna Scientific Cluster (VSC) Research Centre at TU Wien}的塞尔盖·赫梅列夫斯基博士(Dr Sergii Khmelevskyi)解释说:“材料的温度越高,原子就越容易移动——当原子移动得越多,它们就需要更多的空间,它们之间的平均距离增加了。这种效应是热膨胀的基础,是无法阻止的。但有可能生产出一种材料,在这种材料中,这种效应几乎完全被另一种补偿效应(compensating effect)所抵消。”
塞尔盖·赫梅列夫斯基和他的团队开发了复杂的计算机模拟,可用于在原子水平上分析磁性材料在有限温度下的行为。塞尔盖·赫梅列夫斯基说:“这使我们能够更好地理解为什么英瓦尔(invar)几乎不会膨胀。这种效应是由于某些电子随着温度的升高而改变它们的状态。材料中的磁序降低,导致材料收缩。这种效应几乎完全抵消了通常的热膨胀。”
人们已经知道,材料中的磁序是造成英瓦尔效应(invar effect)的原因。但只有通过维也纳的计算机模拟,才有可能如此精确地了解这一过程的细节,从而可以对其他材料进行预测。塞尔盖·赫梅列夫斯基说:“这是第一次有一种理论可以为热膨胀消失的新材料的发展做出具体的预测。”
具有卡戈米平面的焦绿石磁铁(The pyrochlore magnet with Kagome planes)
为了在实践中验证这些预测,塞尔盖·赫梅列夫斯基与来自中国北京科技大学固体化学研究所(Institute of the Solid State Chemistry of the University of Science and Technology Beijing)的邢献然教授(Prof. Xianran Xing)和曹宜力(Yili Cao)副教授组成的实验团队进行了合作。这种合作的结果现在已经呈现:所谓的焦绿石磁铁(pyrochlore magnet)。
以前的英瓦尔合金( invar alloys)只由两种不同的金属组成,与之相反,焦绿石磁铁有四种成分:锆( Zirconium, Zr)、铌(niobium, Nb)、铁(iron, Fe)和钴(cobalt, Co)。“这种材料在前所未有的宽温度范围内具有极低的热膨胀系数,”曹宜力说。
这种显著的温度行为与焦绿石磁铁没有完美的晶格结构有关,这种晶格结构总是以完全相同的方式重复自身。这种材料的组成在每一点上都不相同,它是不均匀的。有些地方钴含量多一点,有些地方钴含量少一点。两个子系统对温度变化的反应不同。这使得该材料成分的细节可以逐点平衡,从而使整体温度膨胀几乎完全为零。
这种材料在极端温度波动或精确测量技术的应用中可能特别有意义,例如在航空、航天或高精度电子元件中。原文发表情况:理论工作由奥地利维也纳理工大学维也纳科学集群研究中心(Vienna Scientific Cluster Research Center, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria)的研究人员完成,2023年12月28日已经在《物理化学杂志:C辑》(The Journal of Physical Chemistry C)网站发表——Sergii Khmelevskyi, Soner Steiner. Predictive Theory of Anomalous Volume Magnetostriction in Fe-Ni Alloys: Bond Repopulation Mechanism of the Invar Effect. The Journal of Physical Chemistry C, 2024, 128(1): 605-612. DOI: 10.1021/acs.jpcc.3c07037. Epub: 28 December, 2023. https://pubs.acs.org/doi/10.1021/acs.jpcc.3c07037
新近发表的计算机模拟工作主要由奥地利研究人员完成,而实验工作主要由中国的研究人员完成。相关研究结果于2024年12月17日已经在《国家科学评论》(National Science Review)杂志网站发表——Yanming Sun, Ruohan Yu, Sergii Khmelevskyi, Kenichi Kato, Yili Cao, Shixin Hu, Maxim Avdeev, Chin-Wei Wang, Chengyi Yu, Qiang Li, Kun Lin, Xiaojun Kuang, Xianran Xing. Local chemical heterogeneity enabled superior zero thermal expansion in nonstoichiometric pyrochlore magnets. National Science Review, 2025: nwae462. DOI: 10.1093/nsr/nwae462. Published: 17 December 2024. https://doi.org/10.1093/ae462.
参与此项研究的有来自中国北京科技大学(Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China)、中国三亚的武汉科技大学三亚科技与教育创新园(The Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya, China)、奥地利维也纳理工大学(Vienna Scientific Cluster Research Center, Technical University of Vienna, Vienna A-1040, Austria)、日本兵库的理化学研究所(RIKEN SPring-8 Center, Hyogo, Japan)、中国兰州大学(Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, China)、澳大利亚核科学和技术组织(Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia)、澳大利亚悉尼大学(School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia)、中国台湾新竹同步加速器辐射研究中心(Neutron Group, Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, China)、中国桂林理工大学(Guangxi Key Laboratory of Electrochemical and magnetochemical Functional Materials, College of Chemistry and Bioengineering,Guilin University of Technology, Guilin, China)的研究人员。
本研究得到了中国国家重点研发计划项目{National Key R&D Program of China (2020YFA0406202)}、中国国家自然科学基金{National Natural Science Foundation of China (22275015 and 22090042)}、中国中央高校基础科研业务费{Fundamental Research Funds for the Central Universities, China (FRF-EYIT-23-03 and FRF-IDRY-23-020)}的资助。
上述介绍仅供参考,欲了解更多信息敬请注意浏览原文和相关报道。
Researchers Unveil New Metal Alloy That Does Not Expand
Abstract (DOI: 10.1021/acs.jpcc.3c07037)
We demonstrate that a quantitative description of the observed magnetovolume anomaly in Fe–Ni Invar alloys can be achieved by taking into account thermally induced longitudinal spin fluctuations on a first-principles basis. The experimental dependence of spontaneous volume magnetostriction on the Ni atomic concentration is readily reproduced. Our calculations predict the Invar anomaly in the Fe65Ni35 INVAR alloy and its gradual vanishing for compositions with more than 50 at. % of Ni. The mechanism of the anomaly is linked to the repopulation of the electronic states in the majority and minority spin bands, accompanied by changes in their bonding character as thermal magnetic disorder increases in the system. These changes can be visualized using first-principles bond population analyses. It provides a simple, chemically intuitive picture of the mechanism of the Invar effect.
Abstract (DOI: 10.1093/nsr/nwae462)
Design of zero thermal expansion (ZTE) materials is urgently required as dimension stable component in widespread modern high-precision technologies. Local chemical order has been of great importance in engineering advanced inorganic materials, but its role in optimizing the ZTE is often overlooked. Herein, we propose local composition heterogeneity for developing superior ZTE via a nonstoichiometric strategy. A remarkably low coefficient of thermal expansion of αa = +1.07 × 10−6 K−1 is achieved from 3 to 440 K in a quaternary Zr-Nb-Fe-Co pyrochlore magnet, which is the widest temperature range among known cubic ZTE metals. High-resolution synchrotron X-ray diffraction and magnetisation measurements reveal that all the Bragg peaks split as resulting from two cubic phases with different magnetic orders. Scanning transmission electron microscopy, Mössbauer spectroscopy and theoretical calculations indicate that such phase separation intimately derive from excess Co dopant preferentially clustering on the Fe pyrochlore-lattice (16d) and simultaneously yielding an antisite Fe on Zr/Nb sublattice (8a). The Co content in pyrochlore-lattice has weaker exchange interactions than that of Fe, but the antisite Fe introduces extra positive exchange interactions between 8a-16d site. Local composition fluctuation of Co and Fe thus affects interplanar ferromagnetic order of pyrochlore-lattice and balances the normal phonon effect successively on heating. Superior corrosion resistance to both acid and alkaline conditions merits potential applications of the present ZTE metal.
转载本文请联系原作者获取授权,同时请注明本文来自诸平科学网博客。
链接地址:https://wap.sciencenet.cn/blog-212210-1471584.html?mobile=1
收藏