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RENOMALIZED NOTES FOR NAVIER-STOKES EQUATIONS BY ROGER
TEMAM

ZUJIN ZHANG

ABSTRACT. In this paper, we give a renormalized note for Roger Temam’s book

[3], sometimes I omit trivialities, while other times I add comments—giving more

direct proof, totally due to the author’s interest and limited knowledge.
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Part 0. Preface

As is well-known (see [1]), the issue of

1. regularity and uniqueness of weak solutions,

2. global existence of strong solutions,

of the Navier-Stokes equations

∂tu− ν∆u+ u · ∇u+∇p = f

∇ · u = 0

 inRn × (0, T ),

u(x, 0) = u0(x), inRn.

(1)

is one of the seven millennium prize problems. To handle this, a lot of mathemati-

cians devoted their valuable time in thinking, experimenting, etc.

The book [3] by Temam is a fundamental one, and here I renormalize it from a

pure mathematical point of view, omitting all of those numerical results.

Let us describe briefly what the tedious job contains.

Chapter 1 deals with the linear, stationary version of (1), namely, deleting the

convective term u · ∇u, neglecting the evolutionary term ∂tu in (1).

Chapter 2 concerns about the stationary version of (1), that is, omitting only ∂tu

in (1).

Chapter 3 is a almost complete treatment of classical results of (1). Precisely,

1. global existence of a weak solution;

2. unique solvability when n = 2;

3. unique solvability when n = 3, under suitable ”smallness” data;

4. local existence of strong solutions;

5. decay of solutions for n = 2, 3.
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Part 1. The steady-state Stokes equations

1. Some function spaces

1.1. Notation

1. The set Ω(⊂ Rn) with boundary Γ and outward unit normal ν.

Cr(r ≥ 1) locally Lipschitz locally star-shaped.

We shall always assume Ω is locally Lipschitz, unless otherwise stated.
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2. Lp and Sobolev spaces.

Lp(Ω) and its vector analogy Lp(Ω);

Wm,p(Ω) and its vector analogyW p(Ω);

D(Ω) (resp. D(Ω̄)) =
{
C∞ functions with compact support in Ω (resp.Ω̄)

}
and its vector analogy D(Ω) (respD(Ω̄));

V = {u ∈ D(Ω); div u = 0} ;

H = completion of V under ‖·‖2;

V = completion of V under ‖·‖1,2.

1.2. A density theorem

Denote by

E(Ω) =
{
u ∈ L2(Ω); div u ∈ L2(Ω)

}
.

This is a Hilbert space with the scalar product

(u,v)E(Ω) = (u,v) + (div u,div v) .

Theorem 1. Let Ω be a Lipschitz open set in Rn. Then the set of vector functions

belonging to D(Ω̄) is dense in E(Ω).

Sketch of Proof of Theorem 1

1. Approximate by functions with compact support in Ω̄.

2. By partition of unity, we may assume w.l.g. that Ω = Rn.

3. Approximate then by functions in D(Ω̄) through regularization.

�

1.3. A trace theorem

For an open, bounded set Ω of class C2, it is well-known that

H1(Ω)! H1/2(Γ ) ⊂ L2(Γ ).

We show an analogous result for E(Ω), that is,
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Theorem 2. Let Ω be an open, bounded set of class C2. Then there exists a linear

continuous operator γν : E(Ω)→ H−1/2(Γ ), such that

γνu = u · ν|Γ , u ∈ D(Ω̄).

Moreover, we have the generalized Stokes formula:

(u,∇w) + (div u, w) = 〈γνu, w|Γ 〉 , u ∈ E(Ω), w ∈ H1(Ω). (2)

Sketch of Proof of Theorem 2

1. For u ∈ E(Ω), define a map

Xu : H1/2(Γ ) 3 φ 7→ (u,∇w) + (div u, w) ,

where w|Γ = φ.

2. Show that Xu(φ) is well-defined, i.e. it is not independent of w.

3. Prove that Xu is bounded and linear, so that by Riesz representation theorem,

∃ g ∈ H−1/2(Γ ), s.t. Xu(φ) = 〈g, φ〉 , φ ∈ H1/2(Γ ).

4. Verify then

γνu ≡ g = u · ν|γ, u ∈ D(Ω̄).

�

Remark 3. The trace mapping

γν : E(Ω)→ H−1/2 (Γ )

is onto.

Proof

1. For φ ∈ H−1/2(Γ ) with 〈φ, 1〉 = 1, consider ∆p = 0, in Ω;

∂p
∂ν

= φ, on Γ.
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Then p ∈ H1(Ω), which is unique up to a constant. Denote by u = ∇p, then we have

γνu = φ.

2. For general ψ ∈ H−1/2(Γ ), we choose a C1 u0 ∈ E(Ω) such that γνu0 = 1. Then

the equality

ψ =

(
ψ − 〈ψ, 1〉

|Γ |

)
+
〈ψ, 1〉
|Γ |

= φ+
〈ψ, 1〉
|Γ |

,

yields an

u = ∇p+
〈ψ, 1〉
|Γ |

u0,

such that γνu = ψ.

�

Theorem 4. The kernel of γν is equal toE0(Ω), which is the completion of D(Ω) under

‖·‖E(Ω).

Remark 5. If Ω is unbounded or Γ is not smooth, then only partial results hold true.

For example,

1. if Γ0(⊂ Γ ) is bounded of C2, then γνu is defined onΓ0, and γνu ∈ H−1/2(Γ0);

2. if Ω is smooth but unbounded or if Γ is the union of a finite number of bounded (n−1)

dimensional manifolds of C2, the γνu is also defined.

Nevertheless, in both cases, the generalized Stokes formula (2) does not hold.

Remark 6. Theorems 1, 2,4 hold for a more general domain Ω, for example if Ω satisfies

the following two conditions:

1.

H1(Ω)! H1/2(Ω);

2. Ω is Lipschtiz.



NSE 123

1.4. Characterization of the spaces H and V

Recall that

V = {u ∈ D(Ω); div u = 0} ,

H = the closure of V in L2(Ω),

V = the closure of V in H1
0 (Ω).

1. Characterization of the gradient of a distribution.

Let Ω be an open set in Rn, and p ∈ D′(Ω), the space of distributions, then

it obvious that

〈∇p,v〉 = −〈p,div v〉 = 0, v ∈ V .

Moreover, the converse of this property is also true. In fact we have

Proposition 7. Let Ω be an open set ofRn, and f = (f1, · · · , fn) , fi ∈ D′(Ω), i =

1, · · · , n. A necessary and sufficient condition that

f = ∇p,

for some p ∈ D′(Ω), is that

〈f ,v〉 = 0, v ∈ V .

Proof. This is just a restatement of a result of de Rham, and it is well-known

in differential geometry.

Proposition 8. Let Ω be a bounded Lipschitz open set inRn, and p ∈ D′(Ω).

(a) If∇p ∈ L2(Ω), then p ∈ L2(Ω), and

‖p‖L2(Ω)/R ≤ c(Ω) ‖∇p‖L2(Ω) . (3)

(b) If∇p ∈H−1(Ω), then p ∈ L2(Ω), and

‖p‖L2(Ω)/R ≤ c(Ω) ‖∇p‖H−1(Ω) . (4)
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In both cases, if Ω is any open set inRn, we have p ∈ L2
loc(Ω).

Remark 9. (a) Combining the results of Propositions 7 and 8, we see that

f ∈H−1(Ω) (resp. L2
loc(Ω))

〈f ,v〉 = 0, v ∈ V

⇒ f = ∇p with p ∈ L2
loc(Ω).

If moreover, Ω is Lipschitz and bounded, then p ∈ L2(Ω)( resp. H1(Ω)).

(b) (4) implies that ∇ is an isomorphism form L2(Ω)/R into H−1(Ω); hence the

range of this linear operator is closed.

(c) Recall that if Ω is bounded,

L2(Ω)/R =

{
p ∈ L2(Ω);

∫
Ω

p = 0

}
.

2. Characterization of the spaceH .

Theorem 10. Let Ω be a Lipschitz open bounded set inRn. Then

H⊥ =
{
u ∈ L2(Ω);u = ∇p, p ∈ H1(Ω)

}
,

H =
{
u ∈ L2(Ω); γνu = 0

}
.

Remark 11. (a) If Ω is any open set inRn, then

H⊥ =
{
u ∈ L2(Ω); u = ∇p, p ∈ L2

loc(Ω)
}
.

(b) If Ω is unbounded an locally Lipschitz, then

H⊥ =
{
u ∈ L2(Ω); u = ∇p, p ∈ L2

loc(Ω̄)
}
.

Theorem 12. Let Ω be an open bounded set of class C2. Then

L2(Ω) = H ⊕H1 ⊕H2,

where

H1 =
{
u ∈ L2(Ω); u = ∇p, p ∈ H1(Ω), ∆p = 0

}
,

H2 =
{
u ∈ L2(Ω); u = ∇p, p ∈ H1

0 (Ω)
}
.
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Proof. For u ∈ L2(Ω), consider ∆p = div u, in Ω,

p = 0, on Γ,

and let u2 = ∇p ∈H2(Ω).

Then we consider ∆q = 0, in Ω,

∂q
∂ν

= γν (u−∇p) , on Γ,

and let

u1 = ∇q ∈H1(Ω),

u0 = u− u1 − u2 ∈H(Ω).

Remark 13. Denote by PH the orthogonal projection from L2(Ω) onto H(⊂

L2(Ω)), then if Ω ∈ Cr+1(r ≥ 1), then

PH : Hr(Ω)→Hr(Ω).

3. Characterization of the space V .

Theorem 14. Let Ω be an open Lipschitz bounded set. Then

V =
{
u ∈ H1

0 (Ω); div u = 0
}
.

Remark 15. A result weaker than Propositions 7 and 8 says that

Ω Lipschitz, bounded and open

f ∈H−1(Ω), 〈f ,v〉 = 0, v ∈ V

⇒ f = ∇p, p ∈ L2(Ω),

Ω open

f ∈H−1(Ω), 〈f ,v〉 = 0, v ∈ V

⇒ f = ∇p, p ∈ L2
loc(Ω).
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2. Existence and uniqueness for the Stokes equations

2.1. Variational formulation of the problem

1. The problem we consider is

−ν∆u+∇p = f

div u = 0

 in Ω,

u = 0, on Γ.

(1)

Here ν > 0 is the kinematic viscosity, u = (u1, · · · , un) is the velocity filed, p is

a scalar pressure, f ∈ L2(Ω) is the external force, Ω with boundary Γ is open,

bounded inRn.

2. Variational formulation of (1).

Definition 16. A measurable vector u is said to be a weak solution to (1) iff

(a) u ∈ V ;

(b) the following equality holds:

ν (∇u,∇v) = (f ,v) , v ∈ V . (2)

Remark 17. (a) The weak solution was introduced by J. Leray.

(b) Once u is found, we can associate a p such that

−ν∆u− f = −∇p,

by Proposition 7. Of course, p ∈ L2
loc(Ω) for general open Ω, but p ∈ L2(Ω) if Ω

is bounded, open and Lipschitz.

(c) Due to the open problem that whether or not V equals to

V • ≡
{
u ∈H1

0 (Ω); div u = 0
}
,

we can however gave two types of different variational formulations, i.e. V may

be replaced by V • in Definition 16. For technical reasons, we shall consider only

the V −case.
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2.2. The projection theorem

1. Existence of a unique weak solution.

Theorem 18. For any open set Ω ⊂ Rn which is bounded in some direction, the

problem (1) has an unique weak solution u. Moreover, we can associate a

p ∈

 L2
loc(Ω),

L2(Ω), if Ω is bounded of class C2,

such that

−∆u− f = −∇p, in D′(Ω).

Proof. We need only establish the existence of an unique weak solution to (1),

while which is a simple consequence of the following classical projection the-

orem.

2. A projection theorem.

Theorem 19. Let W be a separable real Hilbert space with norm ‖·‖W , and

a(u,v) is a bilinear continuous form onW ×W , which is coercive, i.e.

∃ α > 0, s.t. a(u,u) ≥ α ‖u‖2
W , u ∈W .

Then for each l ∈W ′,

∃ | u ∈W , s.t. 〈l,v〉 = a(u,v), v ∈W .

Proof. (a) Uniqueness.

(b) Existence.

We just use a Galerkin approximation method.

3. A variation property.
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Proposition 20. The weak solution to (1) is also the unique element in V such

that

E(u) ≤ E(v), v ∈ V ,

where

E(v) =
ν

2
‖∇v‖2

2 − (f ,v) .

Remark 21. If V and V • are different, Theorem 19 also applies to establish an

unique weak solution ũ of (1) with V replaced by V •. Also Proposition 20 holds

with (u,V ) replaced by (ũ,V •).

2.3. The unbounded case

Here we consider the case when Ω is unbounded in all directions. The difficulty

resides in the invalidation of Poincaré inequality, which is to ensure that for f ∈

L2(Ω), the map

V 3 v 7→ (f ,v) ∈ R,

is bounded and linear.

To overcome this difficulty, we introduce

Y = the completion of V under ‖∇·‖2 ,

and consider f ∈ Y ′. Precisely, we have

Theorem 22. Let Ω be an open set inRn, and let f ∈ Y ′. Then

∃ | u ∈ Y , s.t. ν (∇u,∇v) = 〈f ,v〉 , v ∈ Y .

Moreover, we can associate a

p ∈

 L2
loc(Ω),

L2
loc(Ω̄), if Ω is locally Lipschitz,

such that

−ν∆u− f = −∇p, in D′(Ω).
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Remark 23. Due to the following

Lemma 24. Y ⊂ {u ∈ Lα(Ω); ∇u ∈ L2(Ω)} , with α =
2n

n− 2
, if n ≥ 3, and Y ⊂

{u ∈ Lα(Ω); ∇u ∈ L2(Ω)}, α ≥ 1, for n = 2. The injections are continuous.

We may take f ∈ Lα′(Ω) with 1/α + 1/α′ = 1 in Theorem 22.

2.4. The non-homogeneous Stokes equations

We consider here a non-homogeneous Stokes problem:

−ν∆u+∇p = f

div u = g

 in Ω,

u = φ on Γ.

(3)

We have the following result.

Theorem 25. Let Ω be an open bounded set of class C2 in Rn, and f ∈ H−1(Ω),

g ∈ L2(Ω), φ ∈H1/2(Ω) such that∫
Ω

gdx =

∫
Γ

φ · νdΓ. (4)

Then

∃ u ∈H1(Ω), p ∈ L2(Ω)

which satisfies (3).

Moreover, u is unique and p is unique up to a constant.

Proof. The fact that φ ∈H1/2(Γ ) implies

∃ u0 ∈H1(Ω), s.t. u0|Γ = φ.

Moreover, ∫
Ω

div u0dx =

∫
Γ

φ · νdΓ =

∫
Ω

gdx.

Due to the following
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Lemma 26. Let Ω be a Lipschitz open bounded set in Rn. Then div : H1
0 (Ω) →

L2(Ω)/R is onto.

Proof of the Lemma Noticing that

∇ : L2(Ω)→H−1(Ω),

is isomorphic from

L2(Ω)/Ker (∇) = L2(Ω)/R→ R(∇),

by Proposition 8. Thus

∇∗ = −div : H1
0 (Ω)→ L2(Ω)

has range

R(−div) = R(∇∗) = Ker (∇)⊥ = L2(Ω)/R.

�

We may choose an u1 ∈H1(Ω) such that

div u0 − g = div u1.

Now if we set v = u− u0 − u1, then

−ν∆v +∇p = f + ν∆ (u0 + u1) ∈H−1(Ω)

div v = 0

 in Ω,

v = 0 on Γ.

and the existence of (v, p) and thus (u, p) readily follows from Theorem 18.

Remark 27. If Ω is just bounded, open and Lipschitz, we may then take φ as the trace

of a φ0 ∈H1(Ω) such that∫
Ω

gdx =

∫
Ω

div φ0dx, u− φ0 ∈H1
0 (Ω),

and the conclusion still holds.
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2.5. Regularity results

1. Elliptic regularity.

Lemma 28. Suppose that u ∈H1
0 (Ω) is a weak solution to the following Dirichlet

problem:  −∆u+ u = f , in Ω,

u = 0, on Γ.

Then

f ∈Hm(Ω)⇒ u ∈Hm+2(Ω).

2. Lp counterpart of the Stokes problem.

Proposition 29. Let Ω be an open bounded set of class Cr, r = max(m+ 2, 2), m

integer > 0. Let us suppose

u ∈W 1,α(Ω), p ∈ Lα(Ω), 1 < α <∞,

are solutions to (3). If

f ∈Wm,α(Ω), g ∈ Wm+1,α(Ω), φ ∈Wm+1−1/α,α(Γ ),

then

u ∈Wm+2,α(Ω), p ∈ Wm+1,α(Ω), (5)

and there exists a constant c(α, ν,m,Ω) such that

‖u‖Wm+2,α(Ω) + ‖p‖Wm+1,α(Ω)/R

≤ c0

 ‖f‖Wm,α(Ω) + ‖g‖Wm+1,α(Ω)

+ ‖φ‖Wm+1−1/α,α(Ω) + dα ‖u‖Lα(Ω)

 , (6)

where

dα =

 1, if 1 < α < 2,

0, if α ≥ 2.
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Proof. This is an immediate consequence of Agmon-Douglish-Nirenberg.

Remark 30. For α = 2, m ∈ R, m ≥ −1, one has results similar to those in

Proposition 29 using interpolation techniques.

3. A existence result.

Proposition 31. Let Ω be an open set of class Cr r = max(m + 2, 2), m integer

≥ −1, and

f ∈Wm,α(Ω), g ∈ Wm+1,α(Ω), φ ∈Wm+2−1/α,α(Γ ),

be given satisfying the compatibility condition∫
Ω

gdx =

∫
Γ

φ · νdΓ. (7)

Then there exists a unique pair (u, p) (p is unique up to a constant) which verifies

(3) and satisfies (5) and (6) with dα = 0 for all 1 < α <∞.

2.6. Eigenfunctions of the Stokes problem

Let Ω be an open bounded domain inRn, and consider (1)

−ν∆u+∇p = f

div u = 0

 in Ω,

u = 0, on Γ.

By Theorem 18, we have the solution map

S : L2(Ω) 3 f 7→ u ∈ V (Ω) ⊂⊂ L2(Ω)

is compact and injective. Also, S is self-adjoint inL2(Ω), due to direct computation

as

(Sf , g) = (u,−νv +∇q)

= ν (∇u,∇v)

= (−ν∆u+∇p,v)



NSE 133

= (f ,Sg) ,

if (u, p) and (v, q) are solutions of (1) with forces f and g, respectively.

Thus by classical results in functional analysis,

∃ 0 < µi → 0, {wi} orthonormal in L2(Ω), s.t. wi ∈ V , Swi = µiwi,

i.e.

λiwi = S−1wi,

with 0 < λi = 1/µi →∞.

Invoking Propositions 7 and 8, ∃ pi ∈

 L2
loc(Ω),

L2(Ω), if Ω is Lipschitz,
such that

−ν∆wi +∇pi = λiwi

div wi = 0

 in Ω,

wi = 0, on Γ.

By Proposition 29, we then have

1.

Ω ∈ Cm,m ≥ 2⇒ wi ∈Hm(Ω), p ∈ Hm−1(Ω),

2.

Ω ∈ C∞ ⇒ wi ∈ C∞(Ω̄), pi ∈ C∞(Ω̄).

Also, it is trivial that

(wi,wj) = δij, (∇wi,∇wj) = λiδij.

3. Slightly compressible fluids

Let Ω be a bounded Lipschitz domain inRn. The stationary linearized equations

of slightly compressible fluids are −ν∆uε − 1
ε
∇div uε = f , in Ω,

uε = 0, on Γ.
(1)
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Here ε > 0 is small. (1) are also the stationary Lamé equations of elasticity.

By the projection Theorem 19, one easily verifies that for f ∈ L2(Ω),

∃ | uε ∈H1
0 (Ω), s.t. (1) holds.

Moreover, we have the following convergence result.

Theorem 32. Let Ω be a bounded Lipschitz domain in Rn, uε, u are solutions of (1),

(1) with the same f ∈ L2(Ω), respectively. Then

uε → u, inH1
0 (Ω),

−div uε
ε
→ p in L2(Ω),

where p is the associated pressure to u, and verifies∫
Ω

p = 0.

Through the simple proof of Theorem 32, we use the following lemma, which

has its own interest.

Lemma 33. Let Ω be a bounded Lipschitz domain inRn. Then

∃ c(Ω) > 0, s.t. ‖p‖L2(Ω) ≤ c(Ω)

[∣∣∣∣∫
Ω

p

∣∣∣∣+ ‖∇p‖H−1(Ω)

]
. (2)

The proof of this lemma is omitted as a simple exercise in functional analysis.

Remark 34. If Ω is not connected, (2) is true if we replace
∫

Ω

p by

∑
j

∣∣∣∣∣
∫

Ωj

p

∣∣∣∣∣
where Ωj are the connected components of Ω. For extending Theorem 32 to this case, we

just have to define p by imposing: ∫
Ωj

p = 0, j.
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FIGURE 1. J.L. Lions

4. J.L. Lions

Jacques-Louis Lions (3 May 1928-17 May 2001) was a French mathematician who

made contributions to the theory of partial differential equations and to stochastic

control, among other areas. He received the SIAM’s John Von Neumann prize in

1986. Lions is listed as an ISI highly cited researcher.

After being part of the French Résistance in 1943 and 1944, J.-L. Lions entered

the Ecole Normale Supérieure in 1947. Professor of mathematics at the Université

of Nancy, the Faculty of Sciences of Paris, and the Ecole Polytechnique, he joined

the prestigious Collége de France as well as the French Academy of Sciences in

1973. In 1979, he was appointed director of the Institut National de la Recherche

en Informatique et Automatique (INRIA), where he taught and promoted the use

of numerical simulations using finite elements integration. Throughout his career,

Lions insisted on the use of mathematics in industry, with a particular involve-

ment in the French space program, as well as in domains such as energy and the

environment. This eventually led him to be appointed director of the Centre Na-

tional d’Etudes Spatiales (CNES) from 1984 to 1992. Lions was elected President of

the International Mathematical Union in 1991 and also received the Prize of Japan
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that same year. In 1992, the University of Houston awarded him an honorary doc-

toral degree. He was elected president of the French Academy of Sciences in 1996.

He has left a considerable body of work, among this more than 400 scientific ar-

ticles, 20 volumes of mathematics that were translated into English and Russian,

and major contributions to several collective works, including the 4000 pages of

the monumental Mathematical analysis and numerical methods for science and

technology (in collaboration with Robert Dautray), as well as the Handbook of

numerical analysis in 7 volumes (with Philippe G. Ciarlet).

His son Pierre-Louis Lions is also a well-known mathematician who was awarded

a Fields Medal in 1994.

This follows from J.L. Lions.

Part 2. The steady-state Navier-Stokes equations

5. Existence and uniqueness theorems

5.1. Sobolev inequalities and compactness theorems

Lemma 35. (Sobolev imbedding) For u ∈ Wm,p(Rn), we have

1. if 1/p−m/n = 1/q > 0, then u ∈ Lq(Rn), and

‖u‖q ≤ c(m, p, n) ‖u‖m,p ;

2. if 1/p−m/n = 0, then u ∈ Lq(O), for any 1 ≤ q <∞, O ⊂ Rn bounded, and

‖u‖q,O ≤ c(m, p, n, q, O) ‖u‖m,p ;

3. if Z/n 63 1/p−m/n < 0, then u ∈ Ck,α(Rn) with

k = [m− n/p] , α = m− n/p− k,

and

‖u‖Ck,α ≤ c(m,n, p) ‖u‖m,p .

Remark 36. 1. For the case 1/p = m/n, we have Orcliz imbeddings and BMO(VMO)

imbeddings.

http://en.wikipedia.org/wiki/Jacques-Louis_Lions
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2. For the case Z/n 63 1/p− 1/m < 0, we have the Zygmund imbeddings.

3. This lemma deals with Rn case. For general open, smooth enough set Ω ⊂ Rn with

extension property, we have similar imbeddings.

4. If u ∈ Wm,p
0 (Ω), then the imbeddings are valid without any hypothesis of Ω, such as

smoothness, extension properties and the alike.

5.2. The homogeneous Navier-Stokes equations

1. The problem.

Let Ω be a Lipschitz, bounded open set in Rn with boundary Γ , and f ∈

L2(Ω). We consider the following homogeneous steady-state Navier-Stokes

equations:

−ν∆u+ u · ∇u+∇p = f

div u = 0

 in Ω,

u = 0 on Γ.

(1)

2. Weak formulation.

Definition 37. A measurable vector u is said to be a weak solution to (1) if

(a) u ∈ V ;

(b) the following equality holds:

ν (∇u,∇v) + (u · ∇u,v) = (f ,v) , v ∈ V ; (2)

Remark 38. (a) By a simple density argument, (2) holds for all v ∈ Ṽ , which

is the completion of V in H1(Ω) ∩ Ln(Ω). Observe that by Sobolev imbedding,

Ṽ = V for n = 2, 3, 4.

(b) Once u is eatablished, the pressure p ∈ L1
loc(Ω) is naturally associated by (2) and

Proposition 7.

3. Properties of a trilinear map.

Before going to the existence result, let us study the trilinear map:

b(u,v,w) = (u · ∇v,w) ,
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appeared in (2).

One immediately verifies that

Lemma 39. For any open set Ω ⊂ Rn,

(a) b is defined and trilinear continuous on

H1
0 (Ω)×H1

0 (Ω)×
(
H1

0 (Ω) ∩Ln(Ω)
)
.

(b) b is defined and trilinear continuous on V × V × Ṽ .

(c) if furthermore Ω is bounded and n = 2, then b is defined and trilinear continuous

on V × V × V .

(d) if n = 3, 4, then b is defined and trilinear continuous on V × V × V .

(e) b(u,v,v) = 0, for u ∈ V , v ∈H1
0 (Ω) ∩Ln(Ω).

(f) b(u,v,w) = −b(u,w,v), for u ∈ V , v,w ∈H1
0 (Ω) ∩Ln(Ω).

4. Existence of a weak solution.

Theorem 40. Let Ω be a bounded set inRn, and f ∈H−1(Ω). Then the problem

(1) has at least one weak solution (u, p) ∈ V × L1
loc(Ω).

Proof. We just invoke Galerkin method, and the solution of such an approxi-

mating algebraic system is ensured by the following

Lemma 41. Let X be a finite dimensional Hilbert space with scalar product [·, ·]

and norm [·], and P is a continuous mapping from X to itself such that

[P (ξ), ξ] > 0, for [ξ] = k > 0.

Then there exists a ξ ∈ X , [ξ] ≤ k, such that

P (ξ) = 0.

Remark 42. This is a high dimensional version of classical immediate value theo-

rem for continuous functions, and may be proved by the Brouwer fixed point theorem.
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5. Restricted uniqueness.

Theorem 43. If n ≤ 4 and ν is sufficiently small or f is ”sufficiently small so that

ν2 > c(Ω) ‖f‖V ′ ,

then there exists an unique solution u of (1).

Remark 44. We need here n ≤ 4 so that Ṽ = V , and hence we can choose the

difference of two weak solutions as a test function in (2).

5.3. The homogeneous Navier-Stokes equations (continued)

1. The unbounded case.

Let Ω be open unbounded in Rn, we consider (1). As in Subsection 2.3,

Chapter 1, we introduce

Y = the completion of V under ‖∇·‖2 ,

and

Ỹ = the completion of V under ‖∇·‖2 + ‖·‖n .

Recall that we have the continuous injection:

Y ⊂
{
u ∈ L

2n
n−2 (Ω); ∇u ∈ L2(Ω)

}
,

if n ≥ 3.

Also, due to the fact Ω is unbounded, Y may not equal to Ỹ even when

n ≤ 4. However, we have

Lemma 45. For n ≥ 3, the trilinear form b is continuous on Y × Y × Ỹ , and

b(u,v,v) = 0, u ∈ Y , v ∈ Ỹ ;

b(u,v,w) = −b(u,w,v), u ∈ Y , v,w ∈ Ỹ .

Now, we state our existence result.
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Theorem 46. Let Ω be an open set in Rn, n ≥ 3, and f ∈ Y ′. Then there exists

at least one u ∈ Y which verifies

ν (∇u,∇v) + b(u,u,v) = 〈f ,v〉 , v ∈ Ỹ .

Proof. As in the proof of Theorem 40, we use Galerkin method. However, we

should choose appropriate basis {wi} in Ỹ , hence in Y , for the sake of the

well-definiteness of b.

Ultilizing Lemma 41, the approximation solutions {un} ⊂ Ỹ exist.

Now, the assumption that f ∈ Y ′ is needed to do an a priori estimates for

un in Y (clearly, it is hard to do such in Ỹ ).

The passage to limit is then easy for test functions V ∈ V(Ω), and a simple

density conclude the proof.

Remark 47. (a) For n = 2, an element u of Y does not belong in general to any

Lβ(Ω) space. for this reason, the proof of Lemma 45 fails and b is not defined on

Y × Y × (some space).

(b) As in the proof above, by a simple density argument, we may give

Definition 48. Let Ω be open in Rn, n ≥ 3, and f ∈ Y ′. Then a measurable

vector u isa said to be a weak solution to (1) if

(i) u ∈ Y ;

(ii) the following equality holds:

ν (∇u,∇v) + b(u,u,v) = 〈f ,v〉 , v ∈ V .

2. Regularity of the solution.

Proposition 49. Let Ω be open of class C2 in R2 or R3, and f ∈ C∞(Ω̄). Then

any solution pair (u, p) of (1) belongs to C∞(Ω̄)× C∞(Ω̄).

Proof. This is proved by bootstrap argument for bounded Ω, and cut-off func-

tion technique for the unbounded case.
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Remark 50. (a) It is clear that we can assume less regularity of f and obtain less

regularity of u and p.

(b) the bootstrap argument fails when n = 4. However, one can invoke a different

method to show regularity.

(c) If is an open question whether or not any weak solution to (1) is regular, in case

n ≥ 5.

5.4. The non-homogeneous Navier-Stokes equations

Let Ω be an open bounded domain inRn of class C2, and f ∈H−1(Ω), φ = rot ξ,

with

ξ ∈H2(Ω), ∇ξ ∈ Ln(Ω), ξ ∈ L∞(Ω). (3)

Here rot denotes the usual rotational operator for n = 2, 3; for n ≥ 4, rot denotes

a linear differential operator with constant coefficients, such that div (rot ξ) = 0.

We consider the following non-homogeneous steady-state Navier-Stokes prob-

lem:

−ν∆u+ u · ∇u+∇p = f

div u = 0

 in Ω,

u = φ, on Γ.

(4)

1. Existence result.

Theorem 51. Under the hypotheses above, there exist at least one u ∈ H1(Ω),

and a distribution p on Ω, such that (4) holds.

Proof. The key ideas are:

(a) Using cut-off function technique, we can find a ψ ∈ V (Ω) ∩ Ln(Ω) with

ψ = φ on Γ , and

‖ρψ‖2 < ε,

for any sufficiently small ε > 0, where ρ (·) = dist (·, Γ ).

(b) Taking û = u−ψ, (4) reduces to a homogenous equation, (∗) say.



142 ZUJIN ZHANG

(c) The resolution of (∗) is then solved by the projection theorem 19. The main

ingredients are as follows:

|b(u,ψ,u)| = |b(u,u,ψ)|

≤ ‖∇u‖2 ‖u⊗ψ‖2

≤ ‖∇u‖2

∥∥∥∥uρ
∥∥∥∥

2

‖ρψ‖2

≤ C ‖u‖2
2 ‖ρψ‖2

≤ Cε ‖∇u‖2
2 .

2. Regularity result.

Theorem 52. Let Ω ∈ C∞ in R2 or R3, and f , φ ∈ C∞(Ω̄). Then the solution

pair (u, p) of (4) belongs to C∞(Ω̄)× C∞(Ω̄).

3. Restrict uniqueness.

Theorem 53. Suppose that n ≤ 4, that ‖φ‖n small so that

|b(v,φ,v)| ≤ ν

2
‖∇v‖2

2 , v ∈ V ,

and ν is sufficiently large so that

ν2 > 4c(n) ‖f + ν∆φ− φ · ∇φ‖V ′ ,

where c(n) is the best constant in

|b(u,v,w)| ≤ c(n) ‖u‖H1
0 (Ω) ‖v‖H1

0 (Ω) ‖v‖H1
0 (Ω)∩Ln(Ω) .

Then there exists an unique solution pair (u, p) of (4).

6. Bifurcation theory and non-uniqueness results

We leave the interested reader to [4].
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7. Roger Temam

Roger Meyer Temam (born 19 May 1940) is a College Professor of mathemat-

ics at The Indiana University, Bloomington. According to Mathematics Genealogy

Project, (in the beginning of 2009) Temam has supervised 103 Ph.D. thesis; this is

the highest number Ph.D. thesis supervised by an individual in the field of math-

ematics. He has a total of 281 mathematical descendants. He is known for his

contribution to the theory of Navier-Stokes equations.

1. France.

Temam was advised by Jacques-Louis Lions at the Université de Paris. He

finished his dissertation in 1967. He was elected to the French Academy of

Sciences on December 11, 2007 (while at Indiana University). From 1967 to

2003, Temam held a professorship at Universit Paris-Sud (Orsay).

2. Indiana.

In the mid-1980s, Temam came to Indiana University to work with Ciprian

Foias. Indiana made him a ”a very nice offer.” He taught at both Indiana and

in France for some time. While at Indiana, Temam served as the director of

the Institute for Scientific Computing and Applied Mathematics at IU.

3. Books.

(a) R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,

American Mathematical Society (2001).

(b) R. Temam, Infinite Dimensonal Dynamical Systems in Mechanics and Physics,

2nd ed., Springer (1997).

(c) C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes Equations and

Turbulence, Cambridge University Press (2001).

(d) I. Ekeland and R. Témam, Convex Analysis and Variational Problems, So-

ciety for Industrial Mathematics (1987).

(e) R. Temam and A. Miranville, Mathematical Modeling in Continuum Me-

chanics, 2nd ed., Cambridge University Press (2005).



144 ZUJIN ZHANG

(f) P. Constantin, C. Foias, B. Nicolaenko, and R. Temam, Integral Manifolds

and Inertial Manifolds for Dissipative Partial Differential Equations, Springer-

Verlag, Applies Mathematical Sciences Series, Vol.70 (1988).

4. Awards and honors.

(a) Seymour Cray Prize in Numerical Simulation, 1989.

(b) Elected to the French Academy of Sciences in December 2007.

Part 3. The evolutionary Navier-Stokes equations

8. The linear case

8.1. Some technical lemmas

Lemma 54. Let X be a given Banach space with dual X ′ and let u and v be two func-

tions belonging to L1(a, b;X). Then the following three conditions are equivalent:

1. u is a.e. equal to a primitive function of v,

u(t) = ξ +

∫ t

a

v(s)ds, ξ ∈ X, a.e. t ∈ [a, b]; (1)

2. for each test function φ ∈ D((a, b)),∫ b

a

u(t)φ′(t)dt = −
∫ b

a

v(t)φ(t)dt

(
φ′ =

dφ

dt

)
; (2)

3. for each η ∈ X ′,

d

dt
〈η,u〉 = 〈η,v〉 , in D′((a, b)). (3)

If one of the above items is satisfied, then u, in particular, is equal to a continuous function

from [a, b] into X .

Proof. For simplicity, we assume [a, b] = [0, T ]. And it is trivial that (1) ⇒ (2) and

(1)⇒ (3).

Hence we show

1. (3)⇒ (2).
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Indeed,〈
η,

∫ T

0

u(t)φ′(t)dt

〉
=

∫ T

0

〈η,u(t)〉φ′(t)dt

= −
∫ T

0

d

dt
〈η,u(t)〉φ(t)dt

= −
∫ T

0

〈η,v(t)〉φ(t)dt

=

〈
η,−

∫ T

0

v(t)φ(t)dt

〉
, η ∈ X ′.

2. (2)⇒ (1).

Replacing u(t) by u(t)−
∫ t

0

v(s)ds, we need only prove that∫ T

0

v(t)φ′(t)dt = 0, φ ∈ D((0, T ))⇒ v(t) is a constant vector.

While this follows from regularizaiton as

0 =

∫ T

0

v(t) (κε ? φ)′ (t)dt (κ an even mollifer)

=

∫ T

0

v(t) (κε ? φ
′) (t)dt

=

∫ T

0

(κε ∗ v̄) (t)φ′(t)dt (v̄ the zero extension of v)

= −
∫ T

0

(κε ? v̄)′ (t)φ(t)dt, φ ∈ D((0, T )).

Remark 55. In the proof, we use the following observation:

w ∈ C([0, T ];X)∫ T
0
w(t)φ(t)dt = 0, φ ∈ D((0, T ))

⇒ w(t) = 0, t ∈ [0, T ].

Indeed, for η ∈ X ′,

0 =

〈
η,

∫ T

0

w(t)φ(t)dt

〉
=

∫ T

0

〈η,w(t)〉φ(t)dt,
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which implies easily that

〈η,w(t)〉 = 0, η ∈ X ′.

The proof is then concluded by invoking Hahn-Banach Theorem. �

Lemma 56. Let X, Y be two Banach spaces such that X ⊂ Y . Then

u ∈ L∞(0, T ;X)

u ∈ C([0, T ];Y − w)

⇒ u ∈ C([0, T ];X − w).

Proof. By replacing Y by the closure of X in Y , we may suppose that X is dense in

Y , and hence

Y ′ ⊂ X ′

is a dense continuous injection.

For any η ∈ X ′, any ε > 0,

∃ ηε ∈ Y ′, s.t. ‖ηε − η‖X′ <
ε

2 ‖u‖L∞(0,T ;X)

,

thus

|〈η,u(t)− u(t0)〉| ≤ |〈η − ηε,u(t)− u(t0)〉|+ |〈ηε,u(t)− u(t0)〉|

≤ 2 ‖u‖L∞(0,T ;X) ‖ηε − η‖X′ +
ε

2
(|t− t0| small)

< ε.

The proof is concluded.

Lemma 57. Let X, Y be two Hilbert spaces satisfying

X ⊂ Y ≡ Y ′ ⊂ X ′,

with each continuous inclusion dense. If a function u ∈ L2(0, T ;X) ∩ L∞(0, T ;Y ) and

u′ ∈ L∞(0, T ;X ′), then u ∈ C([0, T ];Y ) with

d

dt
‖u‖2

Y = 2 〈u′,u〉X′×X , in D′((0, T )). (4)
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Proof. (4) is prove easily be regularization. Also, by Lemma 56, u ∈ C([0, T ];X ′ −

w), and hence

‖u(t)− u(t0)‖2
Y

= ‖u(t)‖2
Y + ‖u(t0)‖2

Y − 2 (u(t),u(t0))Y

=

[
‖u(t0)‖2

Y + 2

∫ t

t0

〈u′(s),u(s)〉 ds
]

+ ‖u(t0)‖2
Y − 2 (u(t),u(t0))Y

= 2
[
‖u(t0)‖2

Y − 〈u(t),u(t0)〉X′×X
]

+ 2

∫ t

t0

〈u′(s),u(s)〉 ds

→ 0, as t→ t0,

which verifies that u ∈ C([0, T ];Y ).

8.2. The existence and uniqueness theorem

1. The problem.

Let Ω be a Lipschitz open bounded set in Rn, T > 0. We consider the

following linearized evolutionary Navier-Stokes equations:

∂tu− ν∆u+∇p = f

div u = 0

 in Q ≡ Ω× (0, T ),

u = 0, on ∂Ω× [0, T ],

u(x, 0) = u0(x), in Ω.

(5)

Here u is the velocity filed, ν > 0 is the kinematic viscosity, p is a scalar

pressure, f is the external force, and u0 is the initial velocity field.

2. Weak formulation.

Definition 58. Given f ∈ L2(0, T ;V ′), u0 ∈H , a measurable function u is said

to be a weak solution of (5) if

(a) u ∈ C([0, T ];H) ∩ L2(0, T ;V );

(b)  d
dt

(u,v) + ν (∇u,∇v) = 〈f ,v〉 ,v ∈ V , in D′((0, T ))

u(0) = u0, a.e.
(6)
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3. Existence of an unique weak solution.

Theorem 59. For f ∈ L2(0, T ;V ′), and u0 ∈ H , there exists an unique weak

solution u on [0, T ] of (5).

Proof. (a) Existence.

We use Faedo-Galerkin method.Choose a basis {wi} ⊂ V , and define ap-

proximate problem as follows:
um = gjm(t)wj,

(u′m,wj) + ν (∇um,wj) = 〈fm,wj〉 ,

um(0) = u0m,

(7)

where fm, u0m are smooth functions defined in [0, T ] with values in V ′,H

respectively, and converge to f , u0 in their own function classes.

The resolution of (7) is easily solved, and we have the following a priori

uniform estimates:

um uniformly bounded in L∞(0, T ;H) ∩ L2(0, T ;V ).

Passage to limit gives an

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V )

satisfying (6).

Up to now, what left to check is

u ∈ C([0, T ];H).

While this follows from the fact

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), u′ ∈ L2(0, T ;V ′) (by (6)1) ,

and Lemma 57.

(b) Uniqueness.

Observe that (6)1 can be rewrited as

u′ + νAu = f ,
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with A : V → V ′ being linear and continuous. The uniqueness then

follows from standard trick.

4. Miscellaneous remarks.

(a) More general foces.

If we assume in general that

f ∈ L2(0, T ;V ) + L1(0, T ;H),

then Theorem 59 holds with

u′ ∈ L2(0, T ;V ) + L1(0, T ;H).

(b) The case Ω is unbounded.

If Ω is unbounded, we need no longer introduce Y , which is the comple-

tion of V under ‖∇·‖2, due to a simple Young inequality. And Theorem 59

still holds.

(c) Interpretation of the weak solution.

(i) The pressure p is naturally associated to u, due to Proposition 7.

(ii) By Proposition 14,

V =
{
u ∈H1

0 (Ω); div u = 0
}
,

we have u = 0 on ∂Ω × [0, T ] is a trace sense and div u = 0 in Q, in a

distributional sense.

(iii) From the fact

u ∈ C([0, T ];L2(Ω),

we gather that u(t) tends to u0 in L2-norm, as t→ 0+.

(d) Regularity of the unique weak solution.

Proposition 60. Let us assume that Ω is of class C2, that

f ∈ L2(0, T ;H), u0 ∈ V .
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Then 
u ∈ L2(0, T ;H2(Ω)),

u′ ∈ L2(0, T ;H) (i.e. u′ ∈ L2(Q))

p ∈ Ł2(0, T ;H1(Ω)).

(8)

Proof. (i) (8)2 holds.

This follows from a priori estimates of u′m in the Faedo-Galerkin ap-

proximate problem.

(ii) (8)1,3 hold.

Indeed, this follows from classical regularity theorem for the steady-

state Stokes problem, Proposition 29 and the established (8)2.

9. Compactness theorems

9.1. An ε-type inequality

Lemma 61. Let X0, X,X1 be three Banach spaces such that

X0 ⊂⊂ X ⊂ X1.

Then

∀ ε > 0, ∃ Cε > 0, s.t. ‖u‖X ≤ ε ‖u‖X0
+ Cε ‖u‖X1

, u ∈ X0.

Proof. This is proved by contradiction.

9.2. A compactness theorem in Banach spaces

Theorem 62. Let

• X0, X,X1 be three Banach spaces with X0, X1 reflexive, and

X0 ⊂⊂ X ⊂ X1;

• 0 < T <∞, 1 < α1, α2 <∞.
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Then

Y ≡ Y (0, T ;α0, α1;X0, X1)

≡
{
u ∈ Lα0(0, T ;X0);u′ =

du

dt
∈ Lα1(0, T ;X1)

}
⊂⊂ Lα0(0, T ;X).

Proof. 1. Let {um} ⊂ Y be bounded, then (1 < α0, α1 <∞, X1, X2 reflexive)

um ⇀ u in Lα0(0, T ;X0),

u′m ⇀ u′ in Lα1(0, T ;X1),

up to some subsequence. Denote by

vm = um − u,

then we need only show

vm → 0 in Lα0(0, T ;X). (1)

2. Due to Lemma 61, (1) reduces to

vm → 0 in Lα0(0, T ;X1). (2)

Due also to the fact

Y ⊂ C([0, T ];X1),

and thus

‖vm‖X1
≤ C <∞, (3)

(2) reduces, even further, by Lebesgue’s dominated convergence theorem, to

‖vm‖X1
→ 0, a.e. (4)

3. We may just prove (4) in case t = 0, with other t ∈ (0, T ] easily modified.

Observing that

vm(0) = vm(t)−
∫ t

0

v′m(τ)dτ,
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vm(0) =
1

s

∫ s

0

vm(t)dt− 1

s

∫ s

0

∫ t

0

v′m(τ)dτdt

=
1

s

∫ s

0

vm(t)dt− 1

s

∫ s

0

(s− τ)v′m(τ)dτ

≡ am + bm,

we have for ∀ ε > 0, ∃ s > 0 small, such that

‖vm‖X1
≤
∫ s

0

‖v′m(τ)‖X1
dτ ≤ s1−1/α1 ‖vm‖Lα1 (0,T ;X1) < ε/2.

For this s > 0, we choose m large enough so that

vm(t) ⇀ 0 in X0, a.e. t ∈ [0, s]

⇒ vm(t)→ 0 in X, a.e. t ∈ [0, s] (X0 ⊂⊂ X1)

⇒ ‖am‖X1
< ε/2

(by Lebesgue’s dominated convergence theorem and (3)).

This concludes the proof.

9.3. A compactness theorem involving fractional derivatives

1. Fourier transform and fractional derivative in Hilbert spaces. Let H be a

Hilbert space, and v : R→ H be a function, if

v̂(τ) ≡
∫ ∞
−∞

e−2πiτtv(t)dt

is defined a.e. τ ∈ R, then v̂ is said to be the Fourier transform of v.

With this definition, we may define the derivative of v of order γ as

D̂γv(τ) = (2πiτ)γ v̂(τ).

2. A compactness theorem via fractional derivative.

Theorem 63. Let X0, X,X1 be three Hilbert spaces satisfying

X0 ⊂⊂ X ⊂ X1.
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Then for any bounded K ⊂ R, and γ > 0,

Hγ
K(R;X0, X1) ⊂⊂ L2(R;X).

Here

Hγ
K(R;X0, X1) ≡ {u ∈ Hγ(R;X0, X1); supp u ⊂ K} ,

Hγ(R;X0, X1) ≡
{
u ∈ L2(R;X0); Dγu ∈ L2(R;X1)

}
.

Proof. (a) Let {um} ⊂ Hγ
K(R;X0, X1) be bounded, then

um ⇀ u in L2(R;X0),

Dγum ⇀ Dγu in L2(R;X1).

Denote by

vm = um − u,

we have

vm ⇀ 0 in L2(R;X0);

|·|γ v̂m ⇀ 0 in L2(R;X1).
(5)

We need only show that

vm → 0 in L2(R;X). (6)

(b) As in the proof of Theorem 62, we invoke Lemma 61 to reduce (6) to

vm → 0 in L2(R;X1). (7)

(c) In order to prove (7), we calculate as

‖vm‖2
L2(R;X1) = ‖v̂m‖2

L2(R;X1) (Parseval identity)

=

∫ ∞
−∞
‖v̂(τ)‖2

X1
dτ

=

∫
|τ |≤M

‖v̂(τ)‖2
X1
dτ +

∫
|τ |>M

(
1 + |τ |2γ

)
‖v̂(τ)‖2

X1

1 + |τ |2γ
dτ

≤
∫
|τ |≤M

‖v̂(τ)‖2
X1
dτ +

‖v‖2
Hγ(R;X0,X1)

1 +M2γ
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≡ I1 + I2.

For any ε > 0, we may choose M > 0 large, so that

I2 < ε/2,

and thus we need only show for this M , for large m,

I1 < ε/2. (8)

(d) As in the proof of Theorem 62, we use Lebesgue’s dominated convergence

theorem and the fact X0 ⊂ X1 to show (8), thus conclude the proof of

Theorem 63.

In fact, the following items leads to (8) as depicted.

(i) v̂m(τ) ⇀ 0 in X0 a.e. τ .

For any w ∈ X0,

〈v̂(τ),w〉X0
=

∫ ∞
−∞

e−2πiτt 〈vm(t),w〉X0
dt→ 0,

by (5)1.

(ii) By compact imbedding

X0 ⊂⊂ X1,

we have

v̂m(τ)→ 0 in X1, a.e.

(iii) The boundedness of v̂ in X1.

‖v̂(τ)‖X1
=

∥∥∥∥∫ ∞
−∞

e−2πiτtχK(t)v(t)dt

∥∥∥∥
X1

≤
∫ ∞
−∞

χK(t) ‖v(t)‖X1
dt

≤ ‖χK‖L2(R) ‖v‖L2(R;X)

< ∞.
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More generally, we have the following

Theorem 64. Let X0, X be two Banach spaces, X1 be Hilbert spaces satisfying

X0 ⊂⊂ X ⊂ X1.

Then

Yγ
K (R;α0, 2;X0, X1) (1 < α0 <∞) (9)

≡
{
u ∈ Lα0(R; ;X0); Dγu ∈ L2(0, T ;X1), supp u ⊂ K

}
⊂⊂ Lα0(R;X).

3. A critical case of compact theorem 62.

Theorem 65. Let X0, X be two Banach spaces, X1 be a Hilbert space, and

X0 ⊂⊂ X ⊂ X1.

Then

Y ≡ Y (0, T ;α0, 1;X0, X1) (1 < α0 <∞)

≡
{
u ∈ Lα0(0, T ;X0); u′ =

du

dt
∈ L1(0, T ;X1)

}
⊂⊂ Lα0(0, T ;X).

Proof. 1. We shall show that

Y ⊂ Yγ
[0,T ] (R;α0, 2;X0, X1) , (10)

where, we recall, the latter space is defined in (9). And Theorem 65 follows

readily from Theorem 64.

2. Notations.

For a function v : [0, T ]→ Y , where Y is a Banach space, we denote its zero

extension toR by ṽ. Obviously,

ṽ′(t) = ṽ′(t) + v(0)δ0 − v(T )δT . (11)
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3. We begin to show (10). Let u ∈ Y , then

u ∈ Lα0(0, T ;X0), u′ ∈ L1(0, T ;X1),

and thus

ũ ∈ Lα0(R;X0), ũ′ ∈ L1(R;X1). (12)

From (11),

ũ′ = ũ′ + u(0)δ0 − u(T )δT . (13)

Applying Fourier transform on both sides of (13), we deduce

2πiτ ˆ̃u(τ) = ̂̃u′(τ) + u(0)− u(T )e−2πiτT

∈ L∞(0, T ;X1) (by (12)) . (14)

4. We then show that for some γ > 0 small,

Dγũ ∈ L2(R;X1).

In fact,

‖Dγũ‖2
L2(R;X1) =

∫ ∞
−∞
|τ |2γ

∥∥∥ ˆ̃u
∥∥∥2

X1

dτ

≤ c(γ)

∫ ∞
−∞

1 + |τ |2

1 + |τ |2(1−γ)

∥∥∥ ˆ̃u
∥∥∥2

X1

dτ (by Young inequality)

≤ c(γ)

∫ ∞
−∞

∥∥∥ ˆ̃u
∥∥∥2

X1

dτ

+c(γ)

∫ ∞
−∞

1

1 + |τ |2(1−γ)
dτ · sup

τ∈R

[
|τ |
∥∥∥ ˆ̃u(τ)

∥∥∥
X1

]
< ∞, (by (14))

if

γ < 1/2.
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10. Existence and uniqueness theorems (n ≤ 4)

10.1. An existence theorem in Rn(n ≤ 4)

1. The problem.

Let Ω be an open Lipschitz, bounded set, we consider

∂tu− ν∆u+ u · ∇u+∇p = f

∇ · u = 0

 in Q = Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x), in Ω.

(1)

Here f and u0 are given, defined on Ω× [0, T ] and Ω, respectively.

2. Weak formulation.

Definition 66. Let f ∈ L2(0, T ;V ′), u0 ∈ H , a measurable vector u defined on

Ω× [0, T ] is said to be a weak solution of (1) if

u ∈ C([0, T ];Hw) ∩ L2(0, T ;V ), (2)

u′ + νAu+Bu = f , on (0, T ), (3)

u(0) = u0. (4)

Here

A : V → V ′

u 7→ [V 3 v 7→ (∇u,∇v) ∈ R] ,

B : V → V ′

u 7→ [V 3 v 7→ b (u,u,v) ∈ R] .

Remark 67. We may consider more general force

f ∈ L2(0, T ;V ′) + L1(0, T ;H).

3. The existence result.
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Theorem 68. There exists at least one weak solution to (1) on [0, T ].

The proof of Theorem 68 will be developed in Subsection 10.2.

10.2. Proof of Theorem 68

We apply the Galerkin procedure. This key points are listed as follows.

1. Construct approximates solutions {um}. The local existence involves ODE

theory.

2. Establish the following a priori estimate:

um uniformly bounded in L∞(0, T ;H) ∩ L2(0, T,V ), (5)

which yields that um is globally defined (on [0, T ]).

3. Applying Fourier transform, tracking the proof of Theorem 63, we can show

that

um uniformly bounded in Hγ
[0,T ](R;V ,H). (6)

Then applying Theorem 63, we have

um → u in L2(0, T ;H), (7)

for some

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). (8)

4. Obviously, (4) is true. With (7), we easily show (3). Meanwhile, (2) follows

from (8), (3), and Lemma 56.

10.3. Regularity and uniqueness (n = 2)

1. Some inequalities.

Lemma 69. If n = 2, for any open set Ω,

‖v‖L4(Ω) ≤ 21/4 ‖v‖1/2

L2(Ω) ‖∇v‖
1/2

L2(Ω) , v ∈ H
1
0 (Ω). (9)
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Proof. It suffices to prove (9) for v ∈ C1
c (Ω). For such a v, we write

v2(x) = 2

∫ x1

−∞
v∂1vdx1 ≤ 2

∫
R

|v∂1v| dx1 ≡ v1(x2),

v2(x) = 2

∫ x2

−∞
v∂2vdx2 ≤ 2

∫
R

|v∂2v| dx2 ≡ v2(x1),

and thus ∫
Ω

|v|4 dx =

∫
R2

|v|4 dx

≤
∫
R2

v1(x2)v2(x1)dx

≤
∫
R

v1(x2)dx2 ·
∫
R

v2(x1)dx1

≤ 4

∫
R2

|v∂1v| dx ·
∫
R2

|v∂2v| dx

≤ 4 ‖v‖2
L2(R2) ‖∂1v‖L2(R2) ‖∂2v‖L2(R2)

≤ 2 ‖v‖2
L2(R2) ‖∇v‖

2
L2(R2)

= 2 ‖v‖2
L2(Ω) ‖∇v‖

2
L2(Ω) .

Lemma 70. If n = 2,

|b(u,v,w)| ≤ 21/2 ‖u‖1/2
2 ‖∇u‖

1/2
2 ‖∇v‖

1/2
2 ‖w‖

1/2
2 ‖∇w‖

1/2
2 . (10)

If u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), thenBu ∈ L2(0, T ;V ′), and

‖Bu‖L2(0,T ;V ′) ≤ 21/2 ‖u‖L∞(0,T ;H) ‖u‖L2(0,T ;V ) . (11)

Proof. Direct computation using Hölder inequality and Lemma 69 shows that

|b(u,v,w)| ≤ ‖u‖4 ‖∇v‖2 ‖w‖4

≤ 21/2 ‖u‖1/2
2 ‖∇u‖

1/2
2 ‖∇v‖2 ‖w‖

1/2
2 ‖∇w‖

1/2
2 .

We now proceed to prove (11). In fact, for general n, we have

〈Bu,v〉 = b(u,u,v) = −b(u,v,u) ≤ ‖u‖2
4 ‖v‖2
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⇒

 ‖Bu‖V ′ ≤ C(n) ‖u‖2
4

≤ C(n) ‖u‖2−n/2
2 ‖∇u‖n/22 ∈ L4/n(0, T ).

(12)

And in case n = 2, C(n) = 21/2, 4/n = 2.

2. Regularity and uniqueness result.

Theorem 71. If n = 2, then the weak solution u to (1) given by Theorem 68 is

unique. Moreover, u ∈ C([0, T ];H), and lim
t→0
u(t) = u0, inH .

Proof. (a) u ∈ C([0, T ],H).

In fact,

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V )

ut = f − νAu−Bu ∈ L2(0, T ;V ′) (by (11))

Lemma 57


⇒ u ∈ C([0, T ];H).

(b) The weak solution u given by Theorem 68 is unique.

Let u1,u2 be two solutions of (1). Then the difference u = u1−u2 satisfies

ut + νAu+Bu1 −Bu2 = 0,

u(0) = 0.
(13)

Acting both sides of (13) to u, and invoking Lemma 57, we obtain

1

2

d

dt
‖u‖2

2 + ν ‖∇u‖2
2 = −b(u1,u1,u) + b(u2,u2,u)

= −b(u1,u,u)− b(u,u2,u)

= −b(u,u2,u)

≤ 21/2 ‖u‖2 ‖∇u‖2 ‖∇u2‖2

≤ ν ‖∇u‖2
2 +

1

2ν
‖∇u2‖2

2 ‖u‖
2
2 .

Thus

d

dt
‖u‖2

2 ≤
1

ν
‖∇u2‖2

2 ‖u‖
2
2 ,
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‖u(t)‖2
2 ≤ ‖u(0)‖2

2 e

1

ν

∫ t

0

‖∇u2(s)‖2
2 ds

= 0.

Thus u1 = u2, and the solution is unique.

Remark 72. (a) By Lemma 69, we have u ∈ L4(Q), if n = 2.

(b) The case Ω is unbounded is treated in the same way as Theorem 71.

10.4. On regularity and uniqueness (n = 3)

The 3D counterpart of Lemma 69 is the following

Lemma 73. If n = 3, for any open bounded Ω,

‖v‖L4(Ω) ≤ 21/2 ‖v‖1/4

L2(Ω) ‖∇v‖
3/4

L2(Ω) , v ∈ H
1
0 (Ω). (14)

Proof. We only have to prove (14) for v ∈ C1
c (Ω). For such a v, we calculate as∫

Ω

|v|4 dx =

∫
R3

|v|4 dx

=

∫
R

(∫
R2

|v|4 dx1dx2

)
dx3

≤ 2

∫
R

(∫
R2

|v|2 dx1dx2

)
·
(∫

R2

|∇hv|2 dx1dx2

)
dx3

(∇h = (∂1, ∂2) is the horizontal gradient)

≤ 2 sup
x3

∫
R2

|v|2 dx1dx2 ·
∫
R3

|∇hv|2 dx

≤ 2

∫
R2

sup
x3

|v|2 dx1dx2 · ‖∇hv‖2
2

≤ 22

∫
R3

|v| |∂3v| dx · ‖∇hv‖2
2

≤ 22 ‖v‖2 ‖∂3v‖2 ‖∇hv‖2
2

≤ 22 ‖v‖2 ‖∇v‖
3
2

= 22 ‖v‖L2(Ω) ‖∇v‖
3
L2(Ω) .
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Theorem 74. If n = 3, the solution u of (1) given by Theorem 68 satisfies

u ∈ L8/3(0, T ;L4(Ω)), u′ ∈ L4/3(0, T ;V ′).

Proof. 1. u ∈ L8/3(0, T ;L4(Ω)).

By Lemma 73,

‖u‖4 ≤ 21/2 ‖u‖1/4
2 ‖∇u‖

3/4
2 ∈ L8/3(0, T ).

2. u′ ∈ L4/3(0, T ;V ′).

This is already proved in the proof of Lemma 70, see (12).

Theorem 75. If n = 3, there is at most one weak solution of (1) such that

u ∈ L8(0, T ;L4(Ω)). (15)

Such a solution belongs to C([0, T ];H).

Proof. 1. Bu ∈ L2(0, T ;V ′).

In fact,

〈Bu,v〉 = b(u,u,v) = −b(u,v,u) ≤ ‖u‖2
4 ‖∇v‖2

⇒ ‖Bu‖V ′ ≤ ‖u‖
2
4 ∈ L

4(0, T ) ⊂ L2(0, T ).

2. u′ = f − νAu−Bu ∈ L2(0, T ;V ′).

3. u ∈ C([0, T ],H) follows from Lemma 57, as done several times before.

4. Proof of uniqueness.

Let u1,u2 be two weak solutions of (1) satisfying (15) ( in fact only u1 or

u2 satisfying (15) is enough to conclude the uniqueness). Then the difference

u = u1 − u2 satisfies

1

2

d

dt
‖u‖2

2 + ν ‖∇u‖2
2 = −b(u1,u1,u) + b(u2,u2,u)

= −b(u1,u,u)− b(u,u2,u)

= −b(u,u2,u)
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= b(u,u,u2)

≤ ‖u‖4 ‖∇u‖
2 ‖u2‖2

4

≤ 21/2 ‖u‖1/4
2 ‖∇u‖

7/4
2 ‖u2‖4

≤ ν ‖∇u(t)‖2
2 +

1

2ν
‖u2‖8

4 ‖u‖ 22.

Thus

d

dt
‖u‖2

2 ≤
1

ν
‖u2‖8

4 ‖u‖
2
2 ,

‖u‖2
2 ≤ ‖u(0)‖2

2 e

1

ν

∫ t

0

‖u2(s)‖8
4 ds

= 0.

And hence u1 = u2, the weak solution satisfying (15) is unique.

Remark 76. 1. The case Ω is unbounded is treated in the same way.

2. Serrin-type uniqueness criteria for general n.

Let u ∈ Lr(0, T ;Ls(Ω)) is a weak solution of (1) with

2

r
+
n

s

 ≤ 1, if Ω is bounded,

= 1, if Ω is unbounded.

Then u is the only weak solution of (1).

10.5. More regular solutions

10.5.1. The 2D case

Theorem 77. We assume that n = 2 and that

f ,f ′ ∈ L2(0, T ;V ′), f(0) ∈H ;

u0 ∈H2(Ω) ∩ V .

The the unique solution of (1) given by Theorems 68 and 71 satisfies

u′ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). (16)
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Proof. We just need to do a priori estimates.

By (3), we have

u′ + νAu+Bu = f ,

that is,

〈u′,v〉+ ν (∇u,∇v) + b (u,u,v) = 〈f ,v〉 , v ∈ V . (17)

Differentiating (17) yields

〈u′′,v〉+ ν (∇u′,∇v) + b (u′,u,v) + b (u,u′,v) = 〈f ′,v〉 .

Taking v = u′ in the above equality, we obtain

1

2

d

dt
‖u′‖2

2 + ν ‖∇u′‖2
2

= −b (u′,u,u′) + 〈f ′,u′〉

≤ 21/2 ‖u′‖2 ‖∇u
′‖2 ‖∇u‖2 + ‖f ′‖V ′ ‖∇u

′‖2 (by (9)) (18)

≤
[
ν

4
‖∇u′‖2

2 +
2

ν
‖u′‖2

2 ‖∇u‖
2
2

]
+

[
ν

4
‖∇u′‖2

2 +
1

ν
‖f ′‖2

V ′ .

]

Thus

d

dt
‖u′‖2

2 + ν ‖∇u′‖2
2 ≤

2

ν
‖u′‖2

2 ‖∇u‖
2
2 +

2

ν
‖f ′‖2

V ′ .

Gronwall inequality and the fact that u ∈ L2(0, T ;H) yield (16) as desired.

Remark 78. 1. In fact, in (18), we have used the Poincaré inequality, and for sim-

plicity, we omit the constant (just using the equivalent norm).



NSE 165

2. When applying Gronwall inequality, we have in fact used u′(0) ∈H . Indeed,

u′(0) = f(0)− νAu(0)−Bu(0);

‖u′(0)‖2 ≤ ‖f(0)‖2 + ν ‖Au(0)‖2 + ‖Bu(0)‖2 ;

‖Au(0)‖2 = sup‖v‖2=1 |〈Au(0),v〉|

= sup‖v‖2=1 |(∇u(0),∇v)|

= sup‖v‖2=1 |(∆u(0),v)|

≤ ‖∆u(0)‖2

≤ ‖u0‖H2(Ω) ;

‖Bu(0)‖2 = sup‖v‖2=1 |[Bu(0),v]|

= sup‖v‖2=1 |b (u(0),u(0),v)|

≤ sup‖v‖2=1 ‖u(0)‖4 ‖∇u(0)‖4 ‖v‖2

≤ 21/2 ‖u(0)‖1/2
2 ‖∇u(0)‖1/2

2 ‖∇2u(0)‖1/2
2

≤ 21/2 ‖u(0)‖2
H2(Ω) .

(19)

Theorem 79. The assumptions are those of Theorem 77, and we assume moreover that

Ω is a bounded set of class C2 and that

f ∈ L∞(0, T ;H).

Then

u ∈ L∞(0, T ;H2(Ω)).

Proof. (3) and Proposition 7 yield some distribution p satisfying

−∆u+∇p = f − u′ − u · ∇u. (20)

We may then bootstrap the regularity of u by invoking Proposition 29, Chapter 1.

In fact, we have already that

f ∈ L∞(0, T ;H),

and by Theorem 77 that

u′ ∈ L∞(0, T ;H).



166 ZUJIN ZHANG

Thus

u(t) = u(0) +

∫ t

0

u′(s)ds

⇒ ∇u(t) = ∇u(0) +

∫ t

0

∇u′(s)ds

⇒


‖u(t)‖2 ≤ ‖∇u(0)‖2 +

∫ t
0
‖∇u′(s)‖2 ds

≤ ‖∇u(0)‖2 + ‖∇u′‖L2(0,t;L2(Ω)) t
1/2

∈ L∞(0, T )

⇒ u ∈ L∞(0, T ;H1(Ω))

⇒ u · ∇u ∈ L∞(0, T ;L4/3(Ω)) (by Hölder inequality)

⇒ u ∈ L∞(0, T ;W 2,4/3(Ω)) ⊂ L∞(Q) (by (20) and (6) in Chapter 1)

⇒ u · ∇u ∈ L∞(0, T ;L2(Ω)) (by Hölder inequality again)

⇒ u ∈ L∞(0, T ;H2(Ω)) (by (20) and (6) in Chapter 1 again) .

Remark 80. As in Proposition 49, Chapter 1, we may have intermediate regularity

properties of u for suitable hypotheses on the data. Moreover,

Ω ∈ C∞

u0 ∈ C∞
(
Ω̄
)

f ∈ C∞
(
Q̄
)
⇒ u ∈ C∞

(
Q̄
)
.

10.5.2. The 3D case

Theorem 81. We assume that n = 3 and that given f and u0 satisfying

u0 ∈H2(Ω) ∩ V ,

f ∈ L∞(0, T ;H), f ′ ∈ L1(0, T ;H),

with a ”smallness” condition:

ν3 > 16C (F +Bmax {G, 1}) γΩ, (21)

where
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1. C = ‖u‖2 + ‖f‖L∞(0,T ;L2(Ω));

2. F = ‖f‖L∞(0,T ;L2(Ω));

3. B = ‖f‖L∞(0,T ;L2(Ω)) + ν ‖u0‖H2(Ω) + 21/2 ‖u0‖2
H2(Ω);

4. G = e‖f
′‖L1(0,T ;L2(Ω)) ;

5. γΩ is the Poincaré constant, i.e.

γΩ = inf
{
γ ≥ 0; ‖v‖2 ≤ γ ‖∇v‖2 , v ∈ H

1
0 (Ω)

}
.

Then there exists an unique solution of (1) which satisfies moreover

u′ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). (22)

Proof. 1. Once (22) is shown, uniqueness of solutions follows from Theorem 75

immediately.

Indeed,

u′ ∈ L2(0, T ;V ) ⇒ u ∈ C([0, T ];V )

⇒ u ∈ L∞(0, T ;L4(Ω)) ⊂ L8(0, T ;L4(Ω)).

2. As we did in the course of proof of Theorem 77, in order to prove (22), we

need only do a priori estimates.

Recalling (18), we have

1

2

d

dt
‖u′‖2

2 + ν ‖∇u′‖2
2 = −b (u′,u,u′) + 〈f ′,u′〉

= b (u′,u′,u) + 〈f ′,u′〉

≤ ‖u′‖4 ‖∇u
′‖2 ‖u‖4 + ‖f ′‖2 ‖u

′‖2

≤ 2 ‖u′‖1/4
2 ‖∇u

′‖7/4
2 ‖u‖

1/4
2 ‖∇u‖

3/4
2 + ‖f ′‖2 ‖u

′‖2

≤ 2γ
1/2
Ω ‖∇u′‖2

2 ‖∇u‖2 + ‖f ′‖2 ‖u
′‖2 .

Thus

1

2

d

dt
‖u′‖2

2 +
[
ν − 2γ

1/2
Ω ‖∇u‖2

]
‖∇u′‖2

2 ≤ ‖f
′‖2 ‖u

′‖2 . (23)
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3. Let us first estimate ‖u′0‖2.

Due to (19),

‖u′0‖2 ≤ ‖f
′(0)‖2 + ν ‖u0‖H2(Ω) + 21/2 ‖u0‖2

H2(Ω) ≡ B. (24)

4. Thus if

S(t) ≡ ν − 2γ
1/2
Ω ‖∇u‖2 >

ν

2
, t ∈ [0, T ], (25)

then applying Gronwall inequality to (23) yields (22) as desired.

5. To prove (25), we first bound ‖∇u‖2 in terms of ‖u′‖2.

In fact, taking the inner product of (1) with u in L2(Ω), we obtain

1

2

d

dt
‖u‖2

2 + ν ‖∇u‖2
2 = 〈f ,u〉 . (26)

(a) Integrating (26) yields

‖u‖2
d
dt
‖u‖2 ≤ ‖f‖2 ‖u‖2 ,

d
dt
‖u‖2 ≤ ‖f‖2 ,

‖u‖2 ≤ ‖u0‖2 + ‖f‖L∞(0,T ;L2(Ω)) T ≡ C.

(b) Invoking Lemma 57 gives

ν ‖∇u‖2
2 = 〈f ,u〉 − 〈u′,u〉

≤ ‖f‖2 ‖u‖2 + ‖u′‖2 ‖u‖2

≤ C (F + ‖u′‖2) . (27)

6. Then we show

S(0) >
ν

2
. (28)

In fact,

S(0) = ν − 2γ
1/2
Ω ‖∇u0‖2

≥ ν − 2γ
1/2
Ω

[
C (F + ‖u′0‖2)

ν

]1/2

(by (27))

≤ ν − 2

[
C (F +B) γΩ

ν

]1/2

(by (24))
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>
ν

2
(by (21)) .

7. And finally we argue by contradiction to verify (25).

Suppose that there is some t∗ ∈ [0, T ] such that S(t∗) ≤ ν
2
. Take

τ = min
{
t ∈ [0, T ]; S(t) =

ν

2

}
,

then (argue by invoking the intermediate value theorem for continuous func-

tions)

S(t) > ν
2
, 0 ≤ t < τ,

S(τ) = ν
2
.

(29)

Applying Gronwall inequality to (23) on [0, τ ] yields

‖u′(τ)‖2 ≤ ‖u
′
0‖2G ≤ BG (by (24)) .

Thus (27) implies that

S(τ) = ν − 2γ
1/2
Ω ‖∇u(τ)‖2

≥ ν − 2

[
C (F +BG) γΩ

ν

]1/2

>
ν

2
(by (21)) ,

which contradicts (29)2. This completes the proof of Theorem 81.

Theorem 82. With the assumption of Theorem 81 and if we assume moreover that Ω is

of class C2, the function u satsifies

u ∈ L∞(0, T ;H2(Ω)). (30)

Proof. The key point is the same as Theorem 79. But due to the critical Sobolev

imbedding, we need to bootstrap three times.

Remark 83. The same remark about regularity as Remark 80 holds.
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10.5.3. Introduction of the Pressure (n ≤ 4)

The existence of a pressure p follows from Propositions 7, 8. Meanwhile, the

regularity properties of p can be deduced from Proposition 29.

10.6. Relations between the problems of existence and uniqueness (n = 3)

In this subsection, we call

1. u is a weak solution to (1) if it satisfies (2)-(4), and thus

(a) by Theorem (74) that

u ∈ L8/3(0, T ;L4(Ω)), u′ ∈ L4/3(0, T ;V ′);

(b) by (??) that

‖u(t)‖2
2 + 2ν

∫ t

0

‖∇u(s)‖2
2 ds ≤ ‖u0‖2

2 + 2

∫ t

0

〈f(s),u(s)〉 ds, t ∈ [0, T ];

(c) according to Theorems 68, 71, we know the existence but not the unique-

ness of weak solutions.

2. v is a strong solution if v is a weak solution satisfying furthermore

v ∈ L8(0, T ;L4(Ω)),

and thus

(a) via Lemma 57, v satisfies the energy equality:

‖v(t)‖2
2 + 2ν

∫ t

0

‖∇v(s)‖2
2 ds = ‖v0‖2

2 + 2

∫ t

0

〈f(s),v(s)〉 ds, t ∈ [0, T ].

(b) according to Theorems 75, 81, we know the uniqueness but not the ex-

istence of strong solutions (except in some very restrictive case—see the

”smallness” condition (21)).

The problems of the uniqueness of weak solutions and of the existence of strong

solutions are related as follows:

Theorem 84. We assume that n = 3 and that f and u0 are arbitrarily given,

f ∈ L2(0, T ;H), u0 ∈H .
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If there exists a strong solution v to (1), then there does not exist any other weak solution

u.

Proof. This is a standard ”weak = strong” uniqueness result. For the proof, see [2]

or [3].

10.7. Utilization of a special basis—strong solutions

Let Ω(⊂ Rn, n = 2, 3) be a bounded Lipschitz open set. We shall use a special

basis for the Galerkin method—the basis of eigenfunctions of the Stokes problem

(c.f. Subsection 2.6, Chapter 1) —to obtain further a priori estimates on the solu-

tion and existence results of regular solutions.

1. Preliminary results.

Before we do this, let us give two preliminary results.

Lemma 85. Let Ω be a bounded open set of class C2 inRn. Then ‖Au‖2 is a norm

on V ∩H2(Ω), which is equivalent to the norm induced byH2(Ω).

Proof. This is a simple consequence of Proposition 29, Chapter 1.

Lemma 86. Assume that Ω(⊂ Rn, n = 2, 3) is bounded and of class C2. If

u ∈ V ∩H2(Ω), thenBu ∈H ⊂ L2(Ω), and

‖Bu‖2 ≤ C2 ‖u‖1/2
2 ‖∇u‖2 ‖Au‖

1/2
2 , if n = 2, (31)

‖Bu‖2 ≤ C3 ‖∇u‖3/2
2 ‖Au‖

1/2
2 , if n = 3. (32)

Proof. (a) The case n = 2.

‖Bu‖2 = sup
‖v‖2=1

|b (u,u,v)|

≤ sup
‖v‖2=1

‖u‖4 ‖∇u‖4 ‖v‖2

≤ 21/2 ‖u‖1/2
2 ‖∇u‖2

∥∥∇2u
∥∥1/2

2
(by Lemma 69)

≤ C2 ‖u‖1/2
2 ‖∇u‖

1/2
2 ‖Au‖

1/2
2 (by Lemma 85) .
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(b) The case n = 3.

‖Bu‖2 = sup
‖v‖2=1

|b (u,u,v)|

≤ sup
‖v‖2=1

∫
|u| · |∇u|1/2 · |∇u|1/2 · |v|

≤ sup
‖v‖2=1

‖u‖6 ‖∇u‖
1/2
2 ‖∇u‖

1/2
6 ‖∇v‖2

≤ C3 ‖∇u‖3/2
2 ‖Au‖

1/2
2 (by Lemma 85) .

2. The 2D case.

Theorem 87. We assume that Ω is a bounded open set of class C2 in R2. Let f

and u0 be given such that

u0 ∈H , f ∈ L2(0, T ;H).

Then there exists an unique solution to (1), which satisfies moreover

√
tu ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (33)

√
tu′ ∈ L2(0, T ;H). (34)

If u0 ∈ V , then

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)), (35)

u′ ∈ L2(0, T ;H). (36)

Proof. (a) The case u0 ∈H .

By (3),

u′ + νAu+Bu = f . (37)
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Taking the inner product of (37) withAu in L2(R2) (it is here that we use

the special basis), we obtain

1

2

d

dt
‖∇u‖2

2 + ν ‖Au‖2
2

≤ ‖Bu‖2 ‖Au‖2 + ‖f‖2 ‖Au‖2

≤ C2 ‖u‖1/2
2 ‖∇u‖2 ‖Au‖

3/2
2 + ‖f‖2 ‖Au‖2 (by (31))

≤ 3C2

4ν
‖u‖2

2 ‖∇u‖
4
2 +

1

ν
‖f‖2

2 +
ν

2
‖Au‖2

2 . (38)

Thus

d

dt

[
t ‖∇u‖2

2

]
+ νt ‖Au‖2

2

≤ ‖∇u‖2
2 +

t

ν
‖f‖2

2 +
3C2

2ν

[
‖u‖2

2 ‖∇u‖
2
2

] [
t ‖∇u‖2

2

]
.

Gronwall inequality together with the fact (2) yields (33) (it is the initial

data that we need multiplying t). (34) readily follows from

√
tu′ =

√
t (f − νAu−Bu) ∈ L2(0, T ;H).

(b) The case u0 ∈ V .

In this case, we can apply Gronwall inequality directly to (38), yielding

(35). Meanwhile, (36) follows exactly the same as the case when u0 ∈H .

3. The 3D case.

Theorem 88. We assume that Ω is a bounded open set of class C2 in R2. Let f

and u0 be given such that

u0 ∈ V , f ∈ L∞(0, T ;H).

Then there exists a T ∗ = min {T, T1} with

T1 =
ν

2 max {3C3, 4}
(
‖∇u0‖2

2 + F 2/3
)2(

F = ‖f‖L∞(0,T ;L2(R2)) , C3 ∈ (32)
)
,

(39)
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such that there exists an unique solution u of (1) on (0, T ∗); moreover u satisfies

u ∈ L∞(0, T ∗;V ) ∩ L2(0, T ∗;H2(Ω)), (40)

u′ ∈ L2(0, T ∗;H). (41)

Proof. As in the proof of Theorem 87, we obtain

1

2

d

dt
‖∇u‖2

2 + ν ‖Au‖2
2 ≤ ‖Bu‖2 ‖Au‖2 + ‖f‖2 ‖Au‖2

≤ C3 ‖∇u‖3/2
2 ‖Au‖

3/2
2 + ‖f‖2 ‖Au‖2

≤ 3C3

4ν
‖∇u‖6

2 +
1

ν
‖f‖2

2 +
ν

2
‖Au‖2

2 ,

that is,

d

dt
‖∇u‖2

2 + ν ‖Au‖2
2 ≤

3C3

2ν
‖∇u‖6

2 +
2

ν
‖f‖2

2 . (42)

Thus

d

dt

[
‖∇u‖2

2 + F 2/3
]
≤ 1

2ν
max {3C3, 4}

[
‖∇u‖2

2 + F 2/3
]3
.

Hence

‖∇u‖2
2 + F 2/3 ≤

[
‖∇u0‖2

2 + F 2/3
]2

1− 1
ν

max {3C3, 4}
[
‖∇u‖2

2 + F 2/3
]2
t

≤ 2
[
‖∇u0‖2

2 + F 2/3
]2

(by (39)) .

The theorem then readily follows.

10.8. Decay of solutions

We are going to show that for f = 0, the fluid tends to the equilibrium, as t→∞.

Theorem 89. We assume that Ω is a C2 open bounded set in Rn(n = 2, 3), and that

u0 ∈ V and f = 0.

Then

u ∈

 L∞(0,∞,V ), if n = 2,

L∞(0, T1,V ) ∩ L∞(T2,∞,V ), if n = 3.
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Moreover, in both cases, u decays to 0 exponentially in V as t→∞.

Proof. Standard energy estimates show that

‖u(t)‖2
2 + 2ν

∫ t

0

‖∇u(s)‖2
2 ds ≤ ‖u0‖2

2 , ∀ t > 0, (43)

and (38), (42) give

d

dt
‖∇u‖2

2 +
ν

γ2
Ω

‖∇u‖2
2 ≤

d

dt
‖∇u‖2

2 + ν ‖Au‖2
2 ≤ C ‖∇u‖2n

2 ,

where

C =

 3C2

2ν
‖u0‖2

2 , if n = 2,

3C3

2ν
, if n = 3,

and γΩ is the Poincaré constant.

Hence

d

dt
‖∇u‖2

2 +

[
ν

γ2
Ω

− C ‖∇u‖2(n−1)
2

]
‖∇u‖2

2 ≤ 0. (44)

Now by (43), we can find some T2 ≥ T1 ∈ (39), such that

‖∇u(T2)‖2(n−1)
2 ≤ ν

2Cγ2
Ω

.

And thus (44) yields

d

dt
|t=T2 ‖∇u(t)‖2

2 +
ν

2γ2
Ω

‖∇u(T2)‖2
2 ≤ 0.

Then a simple argument that involves only differential calculus shows that

‖∇u(t)‖2(n−1)
2 ≤ ν

2Cγ2
Ω

,

d

dt
‖∇u(t)‖2

2 +
ν

2γ2
Ω

‖∇u(t)‖2
2 ≤ 0,

(45)

for all t ≥ T2.

Notice that (45)2 implies the exponential decay of u in V as desired.
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11. Rothe’s approach to the existence of a weak solution

The reason that we need n ≤ 4 in the existence results in Section 10 is two-folds.

1. In case n ≤ 4, we have b(u,v,w) is a trilinear form on H1
0 (Ω) (⊂ Ln(Ω)), and

thusBu ∈ V ′ is well-defined.

2. In case n ≤ 4, we have furthermore

Bu ∈ L4/n(0, T ;V ′) ⊂ L1(0, T ;V ′) (by (12))

⇒ u′ ∈ L1(0, T ;V ′)

⇒ u ∈ C([0, T ];V ′)

⇒ u ∈ C([0, T ];Hw) (by Lemma 56) .

In this section, we shall use Rothe’s approach to establish existence results for (1)

in arbitrary space dimensions. A poem generated by the author can be found in

[5].

11.1. The weak formulation

As remarked above, we need to re-state our problem, since b(u,u,w) is no

longer well-defined onH1
0 (Ω)3.

For this purpose, we introduce for each integer s ≥ 1,

Vs = the closure of V inHs(Ω) ∩H1
0 (Ω).

Then we have properties of b andB as the following two lemmas show.

Lemma 90. The form b is trilinear continuous on V × V × Vs if s ≥ n/2, and

|b(u,v,w)| ≤ C ‖u‖2 ‖∇v‖2 ‖w‖Vs . (1)

Proof.

|b(u,v,w)| = |b (u,w,v)|

≤ ‖u‖2 ‖∇w‖n ‖∇v‖ 2n
n−2

≤ C ‖u‖2 ‖∇w‖Hs−1(Ω) ‖∇v‖2
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− (s− 1) +

n

2
≤ n

n

)
.

Lemma 91. If u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ), thenBu ∈ L2(0, T ;V ′s ) for s ≥ n/2.

Proof.

‖Bu‖V ′s = sup
‖v‖Vs≤1

|b (u,u,v)|

≤ C sup
‖v‖Hs≤1

‖u‖2 ‖∇u‖2 ‖v‖Hs

≤ ‖u‖2 ‖∇u‖2 ∈ L
2(0, T ).

We are now ready to give the weak formulation of (1) in arbitrary space dimen-

sions.

Definition 92. Given f ∈ L2(0, T ;V ′) and u0 ∈ H . A measurable vector u defined

on Ω× [0, T ] is said to be a weak solution of (1) if

u ∈ C(0, T ;Hw) ∩ L2(0, T ;V ),

u′ ∈ L2(0, T ;V ′s ) (s ≥ n/2) ;
(2)

u′ + νAu+Bu = f , on (0, T ); (3)

u(0) = u0. (4)

The existence of such a weak solution is given by

Theorem 93. Given f ∈ L2(0, T ;V ′) and u0 ∈H . Then there exists at least one weak

solution u to (1).

This Theorem is proved in Subsections 11.2,11.3,11.4, with the weak continuity

inH of u a direct consequence of Lemma 56.
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11.2. The approximate solutions

Let N be an integer which will later go to infinity and set k = T/N . For m ∈

{1, 2, · · · , N}, we define

1.

fm =
1

k

∫ mk

(m−1)k

f(t)dt ∈ V ′; (5)

2.

u0 = u0,

um − um−1

k
+ νAum +Bum = fm, m ≥ 1.

(6)

Here um depends on k, for simplicity, we denote it um in lieu of umk .

The existence of um ∈ (6)2 is asserted by

Lemma 94. For each k and each m ∈ {1, 2, · · · , N}, there exists at least one um satis-

fying (6)2 and moreover

‖um‖2
2 −

∥∥um−1
∥∥2

2
+
∥∥um − um−1

∥∥2

2
+ 2kν ‖∇um‖2

2 ≤ 2k 〈fm,um〉 . (7)

Proof. Invoking Galerkin method, Lemma 41, Chapter 2, and the fact

2(a− b,a) = ‖a‖2
2 − ‖b‖

2
2 − ‖a− b‖

2
2 , a, b ∈H ,

we easily conclude the proof.

Now we ready to define the approximate solution for each k (or N ) as

uk : [0, T ]→ V , uk(t) = um, t ∈ [(m− 1)k,mk] ;

wk : [0, T ]→H ,

 wk linear on [(m− 1)k,mk] ,

wk(mk) = um.

(8)
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11.3. A priori estimates

Lemma 95.

‖um‖2
2 ≤ d1, (9)

k

N∑
m=1

‖∇um‖2
2 ≤

1

ν
d1, (10)

N∑
m=1

∥∥um − um−1
∥∥2

2
≤ d1, (11)

where

d1 = ‖u0‖2
2 +

1

ν

∫ t

0

‖f(s)‖2
V ′ ds. (12)

Proof. This is a simple consequence of (7).

Lemma 96.

k
N∑
k=1

∥∥∥∥um − um−1

k

∥∥∥∥2

V ′
is uniformly bounded independent of k.

Proof. This follows from (6)2 and Lemma 91.

Lemma 97. The functionuk andwk remain a bounded set ofL∞(0, T ;H)∩L2(0, T ;V );

w′k is bounded in L2(0, T ;V ′s ) and

‖uk −wk‖L2(0,T ;H) → 0, as k → 0. (13)

Proof. The estimations of uk,wk,w′k are just interpretations of (9), (10) and Lemma

96.

We need only show (13).

In fact,

‖uk −wk‖2
L2(0,T ;H) =

∫ T

0

‖uk(t)−wk(t)‖2
2 dt

=
N∑
m=1

∫ mk

(m−1)k

∥∥∥∥t−mkk

(
um − um−1

)∥∥∥∥2

2

dt
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=

∫ k

0

s2

k2
ds ·

N∑
m=1

∥∥um − um−1
∥∥2

2

=
k

3
·

N∑
m=1

∥∥um − um−1
∥∥2

2

≤ k

3
· d1 (by (11))

→ 0, as k → 0.

11.4. Passage to the limits

Due to Lemma 97, we have, up to some subsequence, that

uk
∗
⇀ u, in L∞(0, T ;H),

uk ⇀ u, in L2(0, T ;V );
(14)

wk
∗
⇀ u∗, in L∞(0, T ;H),

wk ⇀ u∗, in L2(0, T ;V );
(15)

w′k ⇀ u′∗, in L2(0, T ;V ′s ). (16)

Because of (13)(by (14)1, (15)1)), u∗ = u.

Then Theorem 62 shows that (by (15)2, (16))

wk → u, in L2(0, T ;H). (17)

Thanks to (13),

uk → u, in L2(0, T ;H), (18)

also.

Now, (6)2 can be interpretated as

w′k + νAuk +Buk = fk, (19)
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where

fk(t) = fm, (m− 1)k ≤ t < mk.

We wish to pass to limit k → 0 in (19).

Observe that

1. Auk ⇀ Au in L2(0, T ;V ′).

This follows directly from (14).

2. Bu⇀ Bu in L2(0, T ;Vs).

In view of Lemma 91, we need only verify, for ∀ v ∈ C∞c ([0, T ];C∞c (Ω)), that∫ T

0

〈Buk −Bu,v〉 dt =

∫ T

0

[b (uk,uk,v)− b (u,u,v)] dt

=

∫ T

0

[b (uk − u,uk,v) + b (u,uk − u,v)] dt

=

∫ T

0

[b (uk − u,uk,v)− b (u,v,uk − u)] dt

⇒ 0(by (18), (14)2).

3. fk → f , in L2(0, T ;V ′).

Due to the fact

‖fk‖L2(0,T ;V ′) ≤ ‖f‖L2(0,T ;V ′) ,

we need only verify, for f ∈ C([0, T ];V ′), that∫ T

0

‖fk − f‖2
V ′ dt =

N∑
m=1

∫ mk

(m−1)k

∥∥∥∥f(t)− 1

k

∫ mk

(m−1)k

f(s)ds

∥∥∥∥
V ′

dt

≤
N∑
m=1

∫ mk

(m−1)k

1

k

∫ mk

(m−1)k

‖f(s)− f(t)‖V ′ dsdt

→ 0, as k → 0.

We obtain by taking k → 0 in (19) that

u′ + νAu+Bu = f . (20)

The last issue that we need to assure is that u(0) = u0.
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For this purpose, we need

Lemma 98. Suppose that X , Y be two Banach spaces satisfying

X ⊂ Y, Y ′ is separable and dense in X ′.

Then

fk
∗
⇀ f, in L∞(0, T ;X)

{∂tfk}∞k=1 is bounded in Lp(0, T ;X), 1 < p ≤ ∞

⇒ fk → f in C([0, T ], Xw).

Proof. Let {φm}∞m=1 ⊂ Y ′ be dense in X ′, then the distance d in Xw is given by

d(g, h) =
∞∑
m=1

1

2m
|〈φm, g − h〉|

1 + |〈φm, g − h〉|
, g, h ∈ X.

To prove that fk → f in C([0, T ];Xw), we invoke Arzela-Ascoli Theorem, and only

need to show the equi-continuity as

d (fk(t), fk(s)) =
∞∑
m=1

1

2m
|〈φm, fk(t)− fk(s)〉|

1 + |〈φm, fk(t)− fk(s)〉|

=

(
M∑
m=1

+
∞∑

m=M+1

)
1

2m
|〈φm, fk(t)− fk(s)〉|

1 + |〈φm, fk(t)− fk(s)〉|

≤ sup
1≤m≤M

|〈φm, fk(t)− fk(s)〉|+
1

2M

= sup
1≤m≤M

∣∣∣∣〈φm,∫ t

s

∂τfk(τ)dτ

〉∣∣∣∣+
1

2M

= sup
1≤m≤M

∣∣∣∣∫ t

s

〈φm, ∂τfk(τ)〉 dτ
∣∣∣∣+

1

2M

≤ sup
1≤m≤M

‖φm‖Y ′ · |t− s|
1− 1

p · ‖∂tfk‖Lp(0,T ;Y ) +
1

2M

→ 0, as (|t− s| → 0, then M →∞) .

Now we conclude that u(0) = u0. Indeed, (15)1 and Lemma 97 together with

Lemma 98 yield uk → u in C([0, T ];Hw). Thus

u0 = wk(0)→ u(0), inHw.



NSE 183

Remark 99. The energy (in)equality can be easily deduced from (7) and Lemma 57.

12. P.L. Lions

Pierre-Louis Lions (born August 11, 1956 in Grasse, Alpes-Maritimes) is a French

mathematician. His parents were Jacques-Louis Lions, a mathematician and at that

time professor at the University of Nancy, who in particular became President of

the International Mathematical Union, and Andrée Olivier, his wife. He graduated

from the école Normale Supérieure in 1977 (same year as Jean-Christophe Yoccoz).

He received his doctorate from the University of Pierre and Marie Curie in 1979.

Lions is listed as an ISI highly cited researcher.

He studies the theory of nonlinear partial differential equations, and received the

Fields Medal for his mathematical work in 1994 while working at the University of

Paris-Dauphine. Lions was the first to give a complete solution to the Boltzmann

equation with proof. Other awards Lions received include the IBM Prize in 1987

and the Philip Morris Prize in 1991. He is a doctor honoris causa of Heriot-Watt

University (Edinburgh) and of the City University of Hong-Kong. Currently, he

holds the position of Professor of Partial differential equations and their applica-

tions at the prestigious Collége de France in Paris as well as a position at Ecole

Polytechnique.

In the paper ”Viscosity solutions of Hamilton-Jacobi equations” (1983), written

with Michael Crandall, he introduced the notion of viscosity solutions. This has

had a great effect on the theory of partial differential equations.

This follows from P.L. Lions.
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