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“The impact of Jim Gray’s thinking is continuing to get people to think in a new 
way about how data and software are redefining what it means to do science.”

—Bill Gates

“I often tell people working in eScience that they aren’t in this field because  
they are visionaries or super-intelligent—it’s because they care about science  

and they are alive now. It is about technology changing the world, and science 
taking advantage of it, to do more and do better.”

—Rhys FRancis, austRalian eReseaRch inFRastRuctuRe council

“One of the greatest challenges for 21st-century science is how we respond to this 
new era of data-intensive science. This is recognized as a new paradigm beyond 

experimental and theoretical research and computer simulations of natural 
phenomena—one that requires new tools, techniques, and ways of working.”

—DouGlas Kell, univeRsity oF ManchesteR

“The contributing authors in this volume have done an extraordinary job of  
helping to refine an understanding of this new paradigm from a variety of  

disciplinary perspectives.”
—GoRDon Bell, MicRosoFt ReseaRch

aBoUT THe FoUrTH ParadiGM 
This book presents the first broad look at the rapidly emerging field of data- 
intensive science, with the goal of influencing the worldwide scientific and com-
puting research communities and inspiring the next generation of scientists. 
Increasingly, scientific breakthroughs will be powered by advanced computing 
capabilities that help researchers manipulate and explore massive datasets. The 
speed at which any given scientific discipline advances will depend on how well 
its researchers collaborate with one another, and with technologists, in areas of 
eScience such as databases, workflow management, visualization, and cloud- 
computing technologies. This collection of essays expands on the vision of pio-
neering computer scientist Jim Gray for a new, fourth paradigm of discovery based 
on data-intensive science and offers insights into how it can be fully realized. 
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gordon bell |  Microsoft Research

Foreword

his book is about a new, fourth paradigm for science based on data- 
intensive computing. In such scientific research, we are at a stage of de-
velopment that is analogous to when the printing press was invented. 
Printing took a thousand years to develop and evolve into the many 

forms it takes today. Using computers to gain understanding from data created and 
stored in our electronic data stores will likely take decades—or less. The contribut-
ing authors in this volume have done an extraordinary job of helping to refine an 
understanding of this new paradigm from a variety of disciplinary perspectives. 

In many instances, science is lagging behind the commercial world in the abil-
ity to infer meaning from data and take action based on that meaning. However, 
commerce is comparatively simple: things that can be described by a few numbers 
or a name are manufactured and then bought and sold. Scientific disciplines can-
not easily be encapsulated in a few understandable numbers and names, and most 
scientific data does not have a high enough economic value to fuel more rapid de-
velopment of scientific discovery.

It was Tycho Brahe’s assistant Johannes Kepler who took Brahe’s catalog of sys-
tematic astronomical observations and discovered the laws of planetary motion. 
This established the division between the mining and analysis of captured and 
carefully archived experimental data and the creation of theories. This division is 
one aspect of the Fourth Paradigm. 

In the 20th century, the data on which scientific theories were based was often 
buried in individual scientific notebooks or, for some aspects of “big science,” stored 
on magnetic media that eventually become unreadable. Such data, especially from 
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individuals or small labs, is largely inaccessible. It is likely to be thrown out when 
a scientist retires, or at best it will be held in an institutional library until it is dis-
carded. Long-term data provenance as well as community access to distributed data 
are just some of the challenges. 

Fortunately, some “data places,” such as the National Center for Atmospheric 
Research1 (NCAR), have been willing to host Earth scientists who conduct experi-
ments by analyzing the curated data collected from measurements and computa-
tional models. Thus, at one institution we have the capture, curation, and analysis 
chain for a whole discipline. 

In the 21st century, much of the vast volume of scientific data captured by new 
instruments on a 24/7 basis, along with information generated in the artificial 
worlds of computer models, is likely to reside forever in a live, substantially publicly 
accessible, curated state for the purposes of continued analysis. This analysis will 
result in the development of many new theories! I believe that we will soon see a 
time when data will live forever as archival media—just like paper-based storage—
and be publicly accessible in the “cloud” to humans and machines. Only recently 
have we dared to consider such permanence for data, in the same way we think of 
“stuff” held in our national libraries and museums! Such permanence still seems 
far-fetched until you realize that capturing data provenance, including individual 
researchers’ records and sometimes everything about the researchers themselves, 
is what libraries insist on and have always tried to do. The “cloud” of magnetic 
polarizations encoding data and documents in the digital library will become the 
modern equivalent of the miles of library shelves holding paper and embedded ink 
particles. 

In 2005, the National Science Board of the National Science Foundation pub-
lished “Long-Lived Digital Data Collections: Enabling Research and Education in 
the 21st Century,” which began a dialogue about the importance of data preserva-
tion and introduced the issue of the care and feeding of an emerging group they 
identified as “data scientists”: 

The interests of data scientists—the information and computer scientists, 
database and software engineers and programmers, disciplinary experts, 
curators and expert annotators, librarians, archivists, and others, who are 
crucial to the successful management of a digital data collection—lie in 
having their creativity and intellectual contributions fully recognized.” [1]

1 www.ncar.ucar.edu
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xiiiTHE FourTH Paradigm

The FourTh Paradigm: a Focus on daTa-inTensive sysTems  
and scienTiFic communicaTion

In Jim Gray’s last talk to the Computer Science and Telecommunications Board on 
January 11, 2007 [2], he described his vision of the fourth paradigm of scientific 
research. He outlined a two-part plea for the funding of tools for data capture, cu-
ration, and analysis, and for a communication and publication infrastructure. He 
argued for the establishment of modern stores for data and documents that are on 
par with traditional libraries. The edited version of Jim’s talk that appears in this 
book, which was produced from the transcript and Jim’s slides, sets the scene for 
the articles that follow.

Data-intensive science consists of three basic activities: capture, curation, and 
analysis. Data comes in all scales and shapes, covering large international ex-
periments; cross-laboratory, single-laboratory, and individual observations; and  
potentially individuals’ lives.2 The discipline and scale of individual experiments  
and especially their data rates make the issue of tools a formidable problem.  
The Australian Square Kilometre Array of radio telescopes project,3 CERN’s Large 
Hadron Collider,4 and astronomy’s Pan-STARRS5 array of celestial telescopes are 
capable of generating several petabytes (PB) of data per day, but present plans limit 
them to more manageable data collection rates. Gene sequencing machines are 
currently more modest in their output due to the expense, so only certain coding 
regions of the genome are sequenced (25 KB for a few hundred thousand base pairs) 
for each individual. But this situation is temporary at best, until the US$10 million 
X PRIZE for Genomics6 is won—100 people fully sequenced, in 10 days, for under 
US$10,000 each, at 3 billion base pairs for each human genome. 

Funding is needed to create a generic set of tools that covers the full range of 
activities—from capture and data validation through curation, analysis, and ulti-
mately permanent archiving. Curation covers a wide range of activities, starting 
with finding the right data structures to map into various stores. It includes the 
schema and the necessary metadata for longevity and for integration across instru-
ments, experiments, and laboratories. Without such explicit schema and metadata, 
the interpretation is only implicit and depends strongly on the particular programs 
used to analyze it. Ultimately, such uncurated data is guaranteed to be lost. We 

2 http://research.microsoft.com/en-us/projects/mylifebits 
3 www.ska.gov.au 
4 http://public.web.cern.ch/public/en/LHC/LHC-en.html 
5 http://pan-starrs.ifa.hawaii.edu/public
6 http://genomics.xprize.org 
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must think carefully about which data should be able to live forever and what ad-
ditional metadata should be captured to make this feasible.

Data analysis covers a whole range of activities throughout the workflow pipe-
line, including the use of databases (versus a collection of flat files that a database 
can access), analysis and modeling, and then data visualization. Jim Gray’s recipe 
for designing a database for a given discipline is that it must be able to answer the 
key 20 questions that the scientist wants to ask of it. Much of science now uses data-
bases only to hold various aspects of the data rather than as the location of the data 
itself. This is because the time needed to scan all the data makes analysis infeasible. 
A decade ago, rereading the data was just barely feasible. In 2010, disks are 1,000 
times larger, yet disc record access time has improved by only a factor of two.

digiTal libraries For daTa and documenTs: JusT like modern documenT libraries 

Scientific communication, including peer review, is also undergoing fundamental 
changes. Public digital libraries are taking over the role of holding publications 
from conventional libraries—because of the expense, the need for timeliness, and 
the need to keep experimental data and documents about the data together.

At the time of writing, digital data libraries are still in a formative stage, with 
various sizes, shapes, and charters. Of course, NCAR is one of the oldest sites for 
the modeling, collection, and curation of Earth science data. The San Diego Su-
percomputer Center (SDSC) at the University of California, San Diego, which is 
normally associated with supplying computational power to the scientific commu-
nity, was one of the earliest organizations to recognize the need to add data to 
its mission. SDSC established its Data Central site,7 which holds 27 PB of data in  
more than 100 specific databases (e.g., for bioinformatics and water resources). In 
2009, it set aside 400 terabytes (TB) of disk space for both public and private data-
bases and data collections that serve a wide range of scientific institutions, includ-
ing laboratories, libraries, and museums. 

The Australian National Data Service8 (ANDS) has begun offering services  
starting with the Register My Data service, a “card catalog” that registers the  
identity, structure, name, and location (IP address) of all the various databases,  
including those coming from individuals. The mere act of registering goes a long 
way toward organizing long-term storage. The purpose of ANDS is to influence 
national policy on data management and to inform best practices for the curation 

7 http://datacentral.sdsc.edu/index.html  
8 www.ands.org.au
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of data, thereby transforming the disparate collections of research data into a co-
hesive collection of research resources. In the UK, the Joint Information Systems 
Committee (JISC) has funded the establishment of a Digital Curation Centre9 to 
explore these issues. Over time, one might expect that many such datacenters will 
emerge. The National Science Foundation’s Directorate for Computer and Infor-
mation Science and Engineering recently issued a call for proposals for long-term 
grants to researchers in data-intensive computing and long-term archiving. 

In the articles in this book, the reader is invited to consider the many opportuni-
ties and challenges for data-intensive science, including interdisciplinary coopera-
tion and training, interorganizational data sharing for “scientific data mashups,” 
the establishment of new processes and pipelines, and a research agenda to exploit 
the opportunities as well as stay ahead of the data deluge. These challenges will  
require major capital and operational expenditure. The dream of establishing a 
“sensors everywhere” data infrastructure to support new modes of scientific re-
search will require massive cooperation among funding agencies, scientists, and 
engineers. This dream must be actively encouraged and funded. 

REFERENCES

 [1] National Science Board, “Long-Lived Digital Data Collections: Enabling Research and Education 
in the 21st Century,” Technical Report NSB-05-40, National Science Foundation, September 
2005, www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf.

 [2] Talk given by Jim Gray to the NRC-CSTB in Mountain View, CA, on January 11, 2007,  
http://research.microsoft.com/en-us/um/people/gray/JimGrayTalks.htm. (Edited transcript  
also in this volume.)

9 www.dcc.ac.uk
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Jim Gray on eScience:  
A Transformed Scientific Method

e have to do better at producing tools to support the whole re-
search cycle—from data capture and data curation to data analysis 
and data visualization. Today, the tools for capturing data both at 
the mega-scale and at the milli-scale are just dreadful. After you 

have captured the data, you need to curate it before you can start doing any kind of 
data analysis, and we lack good tools for both data curation and data analysis. Then 
comes the publication of the results of your research, and the published literature 
is just the tip of the data iceberg. By this I mean that people collect a lot of data and 
then reduce this down to some number of column inches in Science or Nature—or 
10 pages if it is a computer science person writing. So what I mean by data iceberg 
is that there is a lot of data that is collected but not curated or published in any 
systematic way. There are some exceptions, and I think that these cases are a good 
place for us to look for best practices. I will talk about how the whole process of 
peer review has got to change and the way in which I think it is changing and what 
CSTB can do to help all of us get access to our research. 

w

1 National Research Council, http://sites.nationalacademies.org/NRC/index.htm; Computer Science and Telecom-
munications Board, http://sites.nationalacademies.org/cstb/index.htm.
2 This presentation is, poignantly, the last one posted to Jim’s Web page at Microsoft Research before he went missing 
at sea on January 28, 2007—http://research.microsoft.com/en-us/um/people/gray/talks/NRC-CSTB_eScience.ppt. 

EDITED BY Tony Hey, STewarT TanSley, and KriSTin Tolle | Microsoft Research

Based on the transcript of a talk given by Jim Gray  
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escience: WhaT is iT?

eScience is where “IT meets scientists.” Researchers are using many different meth-
ods to collect or generate data—from sensors and CCDs to supercomputers and 
particle colliders. When the data finally shows up in your computer, what do 
you do with all this information that is now in your digital shoebox? People are 
continually seeking me out and saying, “Help! I’ve got all this data. What am I 
supposed to do with it? My Excel spreadsheets are getting out of hand!” So what 
comes next? What happens when you have 10,000 Excel spreadsheets, each with 
50 workbooks in them? Okay, so I have been systematically naming them, but now 
what do I do? 

science Paradigms

I show this slide [Figure 1] every time I talk. I think it is fair to say that this insight 
dawned on me in a CSTB study of computing futures. We said, “Look, computa-
tional science is a third leg.” Originally, there was just experimental science, and 
then there was theoretical science, with Kepler’s Laws, Newton’s Laws of Motion, 
Maxwell’s equations, and so on. Then, for many problems, the theoretical mod-
els grew too complicated to solve analytically, and people had to start simulating. 
These simulations have carried us through much of the last half of the last millen-
nium. At this point, these simulations are generating a whole lot of data, along with 
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a huge increase in data from the experimental sciences. People now do not actually 
look through telescopes. Instead, they are “looking” through large-scale, complex 
instruments which relay data to datacenters, and only then do they look at the in-
formation on their computers.

The world of science has changed, and there is no question about this. The new 
model is for the data to be captured by instruments or generated by simulations 
before being processed by software and for the resulting information or knowledge 
to be stored in computers. Scientists only get to look at their data fairly late in this 
pipeline. The techniques and technologies for such data-intensive science are so 
different that it is worth distinguishing data-intensive science from computational 
science as a new, fourth paradigm for scientific exploration [1].

X-inFo and comP-X

We are seeing the evolution of two branches of every discipline, as shown in the 
next slide [Figure 2]. If you look at ecology, there is now both computational ecol-
ogy, which is to do with simulating ecologies, and eco-informatics, which is to do 
with collecting and analyzing ecological information. Similarly, there is bioinfor-
matics, which collects and analyzes information from many different experiments, 
and there is computational biology, which simulates how biological systems work 
and the metabolic pathways or the behavior of a cell or the way a protein is built. 

FIGURE 2

FactsF

Facts

Facts

Facts

• Data ingest
• Managing a petabyte
• Common schema
• How to organize it
• How to reorganize it
• How to share it with others

X-Info
• The evolution of X-Info and Comp-X for each discipline X

• How to codify and represent our knowledge

The Generic Problems
• Query and Vis tools 
• Building and executing models
• Integrating data and literature  
• Documenting experiments
• Curation and long-term preservation

Questions

Answers

Simulations

Literature

Other Archives

Experiments
& Instruments



xx

This is similar to Jeannette Wing’s idea of “computational thinking,” in which com-
puter science techniques and technologies are applied to different disciplines [2]. 

The goal for many scientists is to codify their information so that they can  
exchange it with other scientists. Why do they need to codify their information? 
Because if I put some information in my computer, the only way you are going to be 
able to understand that information is if your program can understand the infor-
mation. This means that the information has to be represented in an algorithmic 
way. In order to do this, you need a standard representation for what a gene is or 
what a galaxy is or what a temperature measurement is.

eXPerimenTal budgeTs are ¼ To ½ soFTWare

I have been hanging out with astronomers for about the last 10 years, and I get to 
go to some of their base stations. One of the stunning things for me is that I look 
at their telescopes and it is just incredible. It is basically 15 to 20 million dollars 
worth of capital equipment, with about 20 to 50 people operating the instrument. 
But then you get to appreciate that there are literally thousands of people writing 
code to deal with the information generated by this instrument and that millions 
of lines of code are needed to analyze all this information. In fact, the software 
cost dominates the capital expenditure! This is true at the Sloan Digital Sky Survey 
(SDSS), and it is going to continue to be true for larger-scale sky surveys, and in fact 
for many large-scale experiments. I am not sure that this dominant software cost 
is true for the particle physics community and their Large Hadron Collider (LHC) 
machine, but it is certainly true for the LHC experiments.

Even in the “small data” sciences, you see people collecting information and 
then having to put a lot more energy into the analysis of the information than they 
have done in getting the information in the first place. The software is typically 
very idiosyncratic since there are very few generic tools that the bench scientist 
has for collecting and analyzing and processing the data. This is something that we 
computer scientists could help fix by building generic tools for the scientists.

I have a list of items for policymakers like CSTB. The first one is basically to 
foster both building tools and supporting them. NSF now has a cyberinfrastructure 
organization, and I do not want to say anything bad about them, but there needs to 
be more than just support for the TeraGrid and high-performance computing. We 
now know how to build Beowulf clusters for cheap high-performance computing. 
But we do not know how to build a true data grid or to build data stores made out 
of cheap “data bricks” to be a place for you to put all your data and then analyze the 

Jim graY oN eSCiENCE
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information. We have actually made fair progress on simulation tools, but not very 
much on data analysis tools.

ProJecT Pyramids and Pyramid Funding

This section is just an observation about the way most science projects seem to work. 
There are a few international projects, then there are more multi-campus projects, 
and then there are lots and lots of single-lab projects. So we basically have this Tier 1,  
Tier 2, Tier 3 facility pyramid, which you see over and over again in many different 
fields. The Tier 1 and Tier 2 projects are generally fairly systematically organized 
and managed, but there are only relatively few such projects. These large projects 
can afford to have both a software and hardware budget, and they allocate teams of 
scientists to write custom software for the experiment. As an example, I have been 
watching the U.S.-Canadian ocean observatory—Project Neptune—allocate some 
30 percent of its budget for cyberinfrastructure [3]. In round numbers, that’s 30 per-
cent of 350 million dollars or something like 100 million dollars! Similarly, the LHC 
experiments have a very large software budget, and this trend towards large software 
budgets is also evident from the earlier BaBar experiment [4, 5]. But if you are a 
bench scientist at the bottom of the pyramid, what are you going to do for a software 
budget? You are basically going to buy MATLAB3 and Excel4 or some similar soft-
ware and make do with such off-the-shelf tools. There is not much else you can do. 

So the giga- and mega-projects are largely driven by the need for some large-
scale resources like supercomputers, telescopes, or other large-scale experimental 
facilities. These facilities are typically used by a significant community of scientists 
and need to be fully funded by agencies such as the National Science Foundation 
or the Department of Energy. Smaller-scale projects can typically get funding from 
a more diverse set of sources, with funding agency support often matched by some 
other organization—which could be the university itself. In the paper that Gordon 
Bell, Alex Szalay, and I wrote for IEEE Computer [6], we observed that Tier 1 facili-
ties like the LHC get funded by an international consortium of agencies but the 
Tier 2 LHC experiments and Tier 3 facilities get funded by researchers who bring 
with them their own sources of funding. So funding agencies need to fully fund the 
Tier 1 giga-projects but then allocate the other half of their funding for cyberinfra-
structure for smaller projects.

3 www.mathworks.com  
4 http://office.microsoft.com/en-us/excel/default.aspx
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laboraTory inFormaTion managemenT sysTems

To summarize what I have been saying about software, what we need are effectively 
“Laboratory Information Management Systems.” Such software systems provide 
a pipeline from the instrument or simulation data into a data archive, and we are 
close to achieving this in a number of example cases I have been working on. Basi-
cally, we get data from a bunch of instruments into a pipeline which calibrates and 
“cleans” the data, including filling in gaps as necessary. Then we “re-grid”5 the in-
formation and eventually put it into a database, which you would like to “publish” 
on the Internet to let people access your information. 

The whole business of going from an instrument to a Web browser involves a 
vast number of skills. Yet what’s going on is actually very simple. We ought to be 
able to create a Beowulf-like package and some templates that would allow people 
who are doing wet-lab experiments to be able to just collect their data, put it into a 
database, and publish it. This could be done by building a few prototypes and docu-
menting them. It will take several years to do this, but it will have a big impact on 
the way science is done.

As I have said, such software pipelines are called Laboratory Information Man-
agement Systems, or LIMS. Parenthetically, commercial systems exist, and you can 
buy a LIMS system off the shelf. The problem is that they are really geared towards 
people who are fairly rich and are in an industrial setting. They are often also fairly 
specific to one or another task for a particular community—such as taking data 
from a sequencing machine or mass spectrometer, running it through the system, 
and getting results out the other side. 

inFormaTion managemenT and daTa analysis

So here is a typical situation. People are collecting data either from instruments 
or sensors, or from running simulations. Pretty soon they end up with millions of 
files, and there is no easy way to manage or analyze their data. I have been going 
door to door and watching what the scientists are doing. Generally, they are do-
ing one of two things—they are either looking for needles in haystacks or looking 
for the haystacks themselves. The needle-in-the-haystack queries are actually very 
easy—you are looking for specific anomalies in the data, and you usually have some 
idea of what type of signal you are looking for. The particle physicists are looking 

5 This means to “regularize” the organization of the data to one data variable per row, analogous to relational 
database normalization.
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for the Higgs particle at the LHC, and they have a good idea of how the decay of 
such a heavy particle will look like in their detectors. Grids of shared clusters of 
computers are great for such needle-in-a-haystack queries, but such grid computers 
are lousy at trend analysis, statistical clustering, and discovering global patterns in 
the data. 

We actually need much better algorithms for clustering and for what is essen-
tially data mining. Unfortunately, clustering algorithms are not order N or N log N 
but are typically cubic in N, so that when N grows too large, this method does not 
work. So we are being forced to invent new algorithms, and you have to live with 
only approximate answers. For example, using the approximate median turns out 
to be amazingly good. And who would have guessed? Not me! 

Much of the statistical analysis deals with creating uniform samples, perform-
ing some data filtering, incorporating or comparing some Monte Carlo simulations, 
and so on, which all generates a large bunch of files. And the situation with these 
files is that each file just contains a bundle of bytes. If I give you this file, you have 
to work hard to figure out what the data in this file means. It is therefore really 
important that the files be self-describing. When people use the word database, 
fundamentally what they are saying is that the data should be self-describing and 
it should have a schema. That’s really all the word database means. So if I give you 
a particular collection of information, you can look at this information and say, “I 
want all the genes that have this property” or “I want all of the stars that have this 
property” or “I want all of the galaxies that have this property.” But if I give you just 
a bunch of files, you can’t even use the concept of a galaxy and you have to hunt 
around and figure out for yourself what is the effective schema for the data in that 
file. If you have a schema for things, you can index the data, you can aggregate the 
data, you can use parallel search on the data, you can have ad hoc queries on the 
data, and it is much easier to build some generic visualization tools.

In fairness, I should say that the science community has invented a bunch of 
formats that qualify in my mind as database formats. HDF6 (Hierarchical Data For-
mat) is one such format, and NetCDF7 (Network Common Data Form) is another. 
These formats are used for data interchange and carry the data schema with them 
as they go. But the whole discipline of science needs much better tools than HDF 
and NetCDF for making data self-defining.

6 www.hdfgroup.org
7 www.unidata.ucar.edu/software/netcdf 
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daTa delivery: hiTTing a Wall

The other key issue is that as the datasets get larger, it is no longer possible to just 
FTP or grep them. A petabyte of data is very hard to FTP! So at some point, you 
need indices and you need parallel data access, and this is where databases can 
help you. For data analysis, one possibility is to move the data to you, but the other 
possibility is to move your query to the data. You can either move your questions 
or the data. Often it turns out to be more efficient to move the questions than to 
move the data.

The need For daTa Tools: leT 100 FloWers bloom

The suggestion that I have been making is that we now have terrible data man-
agement tools for most of the science disciplines. Commercial organizations like  
Walmart can afford to build their own data management software, but in science 
we do not have that luxury. At present, we have hardly any data visualization and 
analysis tools. Some research communities use MATLAB, for example, but the 
funding agencies in the U.S. and elsewhere need to do a lot more to foster the build-
ing of tools to make scientists more productive. When you go and look at what sci-
entists are doing, day in and day out, in terms of data analysis, it is truly dreadful. 
And I suspect that many of you are in the same state that I am in where essentially 
the only tools I have at my disposal are MATLAB and Excel!

We do have some nice tools like Beowulf8 clusters, which allow us to get cost- 
effective high-performance computing by combining lots of inexpensive computers.
We have some software called Condor9 that allows you to harvest processing cycles 
from departmental machines. Similarly, we have the BOINC10 (Berkeley Open In-
frastructure for Network Computing) software that enables the harvesting of PC 
cycles as in the SETI@Home project. And we have a few commercial products like 
MATLAB. All these tools grew out of the research community, and I cannot figure 
out why these particular tools were successful. 

We also have Linux and FreeBSD Unix. FreeBSD predated Linux, but some-
how Linux took off and FreeBSD did not. I think that these things have a lot to 
do with the community, the personalities, and the timing. So my suggestion is 
that we should just have lots of things. We have commercial tools like LabVIEW,11  

8 www.beowulf.org 
9 www.cs.wisc.edu/condor
10 http://boinc.berkeley.edu
11 www.ni.com/labview 
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for example, but we should create several other such systems. And we just need 
to hope that some of these take off. It should not be very expensive to seed a large 
number of projects. 

The coming revoluTion in scholarly communicaTion

I have reached the end of the first part of my talk: it was about the need for tools 
to help scientists capture their data, curate it, analyze it, and then visualize it. The 
second part of the talk is about scholarly communication. About three years ago, 
Congress passed a law that recommended that if you take NIH (National Institutes 
of Health) funding for your research, you should deposit your research reports with 
the National Library of Medicine (NLM) so that the full text of your papers should 
be in the public domain. Voluntary compliance with this law has been only 3 per-
cent, so things are about to change. We are now likely to see all of the publicly fund-
ed science literature forced online by the funding agencies. There is currently a bill 
sponsored by Senators Cornyn and Lieberman that will make it compulsory for 
NIH grant recipients to put their research papers into the NLM PubMed Central 
repository.12 In the UK, the Wellcome Trust has implemented a similar mandate 
for recipients of its research funding and has created a mirror of the NLM PubMed 
Central repository. 

But the Internet can do more than just make available the full text of research 
papers. In principle, it can unify all the scientific data with all the literature to  
create a world in which the data and the literature interoperate with each other  
[Figure 3 on the next page]. You can be reading a paper by someone and then go off  
and look at their original data. You can even redo their analysis. Or you can be 
looking at some data and then go off and find out all the literature about this data. 
Such a capability will increase the “information velocity” of the sciences and will 
improve the scientific productivity of researchers. And I believe that this would be 
a very good development!

Take the example of somebody who is working for the National Institutes of 
Health—which is the case being discussed here—who produces a report. Suppose 
he discovers something about disease X. You go to your doctor and you say, “Doc, 
I’m not feeling very well.” And he says, “Andy, we’re going to give you a bunch 
of tests.” And they give you a bunch of tests. He calls you the next day and says, 

12 See Peter Suber’s Open Access newsletter for a summary of the current situation: www.earlham.edu/~peters/fos/
newsletter/01-02-08.htm.

www.earlham.edu/~peters/fos/newsletter/01-02-08.htm
www.earlham.edu/~peters/fos/newsletter/01-02-08.htm
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“There’s nothing wrong with you. Take two aspirins, and take some vacation.” You 
go back a year later and do the same thing. Three years later, he calls you up and 
says, “Andy, you have X! We figured it out!” You say, “What’s X?” He says, “I have 
no idea, it’s a rare disease, but there’s this guy in New York who knows all about it.” 
So you go to Google13 and type in all your symptoms. Page 1 of the results, up comes 
X. You click on it and it takes you to PubMed Central and to the abstract “All About 
X.” You click on that, and it takes you to the New England Journal of Medicine, which 
says, “Please give us $100 and we’ll let you read about X.” You look at it and see that 
the guy works for the National Institutes of Health. Your tax dollars at work. So 
Lieberman14 and others have said, “This sucks. Scientific information is now peer 
reviewed and put into the public domain—but only in the sense that anybody can 
read it if they’ll pay. What’s that about? We’ve already paid for it.”

The scholarly publishers offer a service of organizing the peer review, printing 
the journal, and distributing the information to libraries. But the Internet is our 
distributor now and is more or less free. This is all linked to the thought process 
that society is going through about where intellectual property begins and ends. 
The scientific literature, and peer reviewed literature in particular, is probably one 
of the places where it ends. If you want to find out about X, you will probably be 

FIGURE 3

13 Or, as Jim might have suggested today, Bing. 
14 The Federal Research Public Access Act of 2006 (Cornyn-Lieberman).
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able to find out that peach pits are a great treatment for X. But this is not from the 
peer reviewed literature and is there just because there’s a guy out there who wants 
to sell peach pits to you to cure X. So the people who have been pioneering this 
movement towards open access are primarily the folks in healthcare because the 
good healthcare information is locked up and the bad healthcare information is on 
the Internet.

The neW digiTal library

How does the new library work? Well, it’s free because it’s pretty easy to put a 
page or an article on the Internet. Each of you could afford to publish in PubMed  
Central. It would just cost you a few thousand dollars for the computer—but how 
much traffic you would have I don’t know! But curation is not cheap. Getting the 
stuff into the computer, getting it cross-indexed, all that sort of stuff, is costing the 
National Library of Medicine about $100 to curate each article that shows up. If 
it takes in a million articles a year, which is approximately what it expects to get, 
it’s going to be $100 million a year just to curate the stuff. This is why we need to 
automate the whole curation process.

What is now going on is that PubMed Central, which is the digital part of the  
National Library of Medicine, has made itself portable. There are versions of 
PubMed Central running in the UK, in Italy, in South Africa, in Japan, and in 
China. The one in the UK just came online last week. I guess you can appreciate, 
for example, that the French don’t want their National Library of Medicine to be 
in Bethesda, Maryland, or in English. And the English don’t want the text to be in 
American, so the UK version will probably use UK spellings for things in its Web 
interface. But fundamentally, you can stick a document in any of these archives and 
it will get replicated to all the other archives. It’s fairly cheap to run one of these 
archives, but the big challenges are how you do curation and peer review.

overlay Journals

Here’s how I think it might work. This is based on the concept of overlay journals. 
The idea is that you have data archives and you have literature archives. The articles 
get deposited in the literature archives, and the data goes into the data archives. 
Then there is a journal management system that somebody builds that allows us, 
as a group, to form a journal on X. We let people submit articles to our journal by 
depositing them in the archive. We do peer review on them and for the ones we 
like, we make a title page and say, “These are the articles we like” and put it into 
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the archive as well. Now, a search engine comes along and cranks up the page rank 
on all of those articles as being good because they are now referenced by this very 
significant front page. These articles, of course, can also point back to the data. 
Then there will be a collaboration system that comes along that allows people to 
annotate and comment on the journal articles. The comments are not stored in the 
peer reviewed archive but on the side because they have not been peer reviewed—
though they might be moderated. 

The National Library of Medicine is going to do all this for the biomedical com-
munity, but it’s not happening in other scientific communities. For you as members 
of the CSTB, the CS community could help make this happen by providing appro-
priate tools for the other scientific disciplines.

There is some software we have created at Microsoft Research called Conference 
Management Tool (CMT). We have run about 300 conferences with this, and the 
CMT service makes it trivial for you to create a conference. The tool supports the 
whole workflow of forming a program committee, publishing a Web site, accept-
ing manuscripts, declaring conflicts of interest and recusing yourself, doing the 
reviews, deciding which papers to accept, forming the conference program, notify-
ing the authors, doing the revisions, and so on. We are now working on providing a 
button to deposit the articles into arXiv.org or PubMed Central and pushing in the 
title page as well. This now allows us to capture workshops and conferences very 
easily. But it will also allow you to run an online journal. This mechanism would 
make it very easy to create overlay journals.

Somebody asked earlier if this would be hard on scholarly publishers. And the 
answer is yes. But isn’t this also going to be hard for the IEEE and the ACM? The 
answer is that the professional societies are terrified that if they don’t have any  
paper to send you, you won’t join them. I think that they are going to have to deal 
with this somehow because I think open access is going to happen. Looking around 
the room, I see that most of us are old and not Generation Xers. Most of us join 
these organizations because we just think it’s part of being a professional in that 
field. The trouble is that Generation Xers don’t join organizations.

WhaT haPPens To Peer revieW?

This is not a question that has concerned you, but many people say, “Why do we 
need peer review at all? Why don’t we just have a wiki?” And I think the answer 
is that peer review is different. It’s very structured, it’s moderated, and there is a 
degree of confidentiality about what people say. The wiki is much more egalitarian. 

Jim graY oN eSCiENCE
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I think wikis make good sense for collecting comments about the literature after 
the paper has been published. One needs some structure like CMT provides for the 
peer review process. 

Publishing daTa

I had better move on and go very quickly through publishing data. I’ve talked about 
publishing literature, but if the answer is 42, what are the units? You put some 
data in a file up on the Internet, but this brings us back to the problem of files. The 
important record to show your work in context is called the data provenance. How 
did you get the number 42?

Here is a thought experiment. You’ve done some science, and you want to pub-
lish it. How do you publish it so that others can read it and reproduce your results 
in a hundred years’ time? Mendel did this, and Darwin did this, but barely. We are 
now further behind than Mendel and Darwin in terms of techniques to do this. It’s 
a mess, and we’ve got to work on this problem.

daTa, inFormaTion, and knoWledge: onTologies and semanTics

We are trying to objectify knowledge. We can help with basic things like units, 
and what is a measurement, who took the measurement, and when the measure-
ment was taken. These are generic things and apply to all fields. Here [at Microsoft 
Research] we do computer science. What do we mean by planet, star, and galaxy? 
That’s astronomy. What’s the gene? That’s biology. So what are the objects, what 
are the attributes, and what are the methods in the object-oriented sense on these 
objects? And note, parenthetically, that the Internet is really turning into an object-
oriented system where people fetch objects. In the business world, they’re objectify-
ing what a customer is, what an invoice is, and so on. In the sciences, for example, 
we need similarly to objectify what a gene is—which is what GenBank15 does.

And here we need a warning that to go further, you are going to bump into the  
O word for “ontology,” the S word for “schema,” and “controlled vocabularies.” That 
is to say, in going down this path, you’re going to start talking about semantics, 
which is to say, “What do things mean?” And of course everybody has a different 
opinion of what things mean, so the conversations can be endless.

The best example of all of this is Entrez,16 the Life Sciences Search Engine,  

15 www.ncbi.nlm.nih.gov/Genbank 
16 www.ncbi.nlm.nih.gov/Entrez
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created by the National Center for Biotechnology Information for the NLM. Entrez 
allows searches across PubMed Central, which is the literature, but they also have 
phylogeny data, they have nucleotide sequences, they have protein sequences and 
their 3-D structures, and then they have GenBank. It is really a very impressive  
system. They have also built the PubChem database and a lot of other things. This 
is all an example of the data and the literature interoperating. You can be looking at 
an article, go to the gene data, follow the gene to the disease, go back to the litera-
ture, and so on. It is really quite stunning!

So in this world, we have traditionally had authors, publishers, curators, and con-
sumers. In the new world, individual scientists now work in collaborations, and jour-
nals are turning into Web sites for data and other details of the experiments. Curators 
now look after large digital archives, and about the only thing the same is the indi-
vidual scientist. It is really a pretty fundamental change in the way we do science.

One problem is that all projects end at a certain point and it is not clear what 
then happens to the data. There is data at all scales. There are anthropologists out 
collecting information and putting it into their notebooks. And then there are the 
particle physicists at the LHC. Most of the bytes are at the high end, but most of the 
datasets are at the low end. We are now beginning to see mashups where people 
take datasets from various places and glue them together to make a third data-
set. So in the same sense that we need archives for journal publications, we need  
archives for the data.

So this is my last recommendation to the CSTB: foster digital data libraries. 
Frankly, the NSF Digital Library effort was all about metadata for libraries and not 
about actual digital libraries. We should build actual digital libraries both for data 
and for the literature.

summary

I wanted to point out that almost everything about science is changing because 
of the impact of information technology. Experimental, theoretical, and computa-
tional science are all being affected by the data deluge, and a fourth, “data-intensive” 
science paradigm is emerging. The goal is to have a world in which all of the science 
literature is online, all of the science data is online, and they interoperate with each 
other. Lots of new tools are needed to make this happen.
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ediTors’ noTe

The full transcript and PowerPoint slides from Jim’s talk may be found at the 
Fourth Paradigm Web site.17 The questions and answers during the talk have been 
extracted from this text and are available on the Web site. (Note that the question-
ers have not been identified by name.) The text presented here includes minor edits 
to improve readability, as well as our added footnotes and references, but we believe 
that it remains faithful to Jim’s presentation. 
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Change is inevitable—the Universe expands, nature adapts 
and evolves, and so must the scientific tools and technol-
ogies that we employ to feed our unrelenting quest for 
greater knowledge in space, Earth, and environmental 

sciences. The opportunities and challenges are many. New com-
puting technologies such as cloud computing and multicore proces-
sors cannot provide the entire solution in their generic forms. But 
effective and timely application of such technologies can help us 
significantly advance our understanding of our world, including its 
environmental challenges and how we might address them. 

 With science moving toward being computational and data 
based, key technology challenges include the need to better cap-
ture, analyze, model, and visualize scientific information. The ul-
timate goal is to aid scientists, researchers, policymakers, and the 
general public in making informed decisions. As society demands 
action and responsiveness to growing environmental issues, new 
types of applications grounded in scientific research will need 
to move from raw discovery and eliciting basic data that leads to 
knowledge to informing practical decisions. Active issues such as 
climate change will not wait until scientists have all the data to fill 
their knowledge gaps.

 As evidenced by the articles in this part of the book, scientists 
are indeed actively pursuing scientific understanding through the 

DAN FAY |  Microsoft Research
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use of new computing technologies. Szalay and Blakeley describe Jim Gray’s infor-
mal rules for data-centric development and how they serve as a blueprint for making 
large-scale datasets available through the use of databases, leveraging the built-in 
data management as well as the parallel processing inherent in SQL servers.

In order to facilitate informed decisions based on reliable scientific evidence, 
Dozier and Gail explore how the applied use of technology and current scientific 
knowledge is key to providing tools to policy and decision makers. Hunt, Baldocchi, 
and van Ingen describe the changes under way in ecological science in moving 
from “science in the small” to large collaborations based on synthesis of data. These 
aggregated datasets expose the need for collaborative tools in the cloud as well as 
easy-to-use visualization and analysis tools. Delaney and Barga then provide com-
pelling insights into the need for real-time monitoring of the complex dynamics in 
the sea by creating an interactive ocean laboratory. This novel cyberinfrastructure 
will enable new discoveries and insights through improved ocean models. 

The need for novel scientific browsing technologies is highlighted by Goodman 
and Wong. To advance the linkage across existing resources, astronomers can use 
a new class of visualization tools, such as the WorldWide Telescope (WWT). This 
new class of tool offers access to data and information not only to professional sci-
entists but also the general public, both for education and possibly to enable new 
discoveries by anyone with access to the Internet. Finally, Lehning et al. provide 
details about the use of densely deployed real-time sensors combined with visu-
alization for increased understanding of environmental dynamics—like a virtual 
telescope looking back at the Earth. These applications illustrate how scientists 
and technologists have the opportunity to embrace and involve citizen scientists 
in their efforts.

In Part 1 and throughout the book, we see new sensors and infrastructures  
enabling real-time access to potentially enormous quantities of data, but with ex-
perimental repeatability through the use of workflows. Service-oriented architec-
tures are helping to mitigate the transition to new underlying technologies and 
enable the linkage of data and resources. This rapidly evolving process is the only 
mechanism we have to deal with the data deluge arising from our instruments. 

The question before us is how the world’s intellectual and technological resourc-
es can be best orchestrated to authoritatively guide our responses to current and 
future societal challenges. The articles that follow provide some great answers. 



Gray’s Laws:  
Database-centric  

Computing in Science

he explosion in scientific data  has created a major chal-
lenge for cutting-edge scientific projects. With datasets 
growing beyond a few tens of terabytes, scientists have 
no off-the-shelf solutions that they can readily use to 

manage and analyze the data [1]. Successful projects to date have 
deployed various combinations of flat files and databases [2]. How-
ever, most of these solutions have been tailored to specific projects 
and would not be easy to generalize or scale to the next generation 
of experiments. Also, today’s computer architectures are increas-
ingly imbalanced; the latency gap between multi-core CPUs and 
mechanical hard disks is growing every year, making the chal-
lenges of data-intensive computing harder to overcome [3]. What 
is needed is a systematic and general approach to these problems 
with an architecture that can scale into the future.

Gray’s Laws

Jim Gray formulated several informal rules—or laws—that codify 
how to approach data engineering challenges related to large-scale 
scientific datasets. The laws are as follows:

1. Scientific computing is becoming increasingly data intensive.
2. The solution is in a “scale-out” architecture.
3. Bring computations to the data, rather than data to the  

computations.
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4. Start the design with the “20 queries.”
5. Go from “working to working.”

It is important to realize that the analysis of observational datasets is severely 
limited by the relatively low I/O performance of most of today’s computing plat-
forms. High-performance numerical simulations are also increasingly feeling the 
“I/O bottleneck.” Once datasets exceed the random access memory (RAM) capac-
ity of the system, locality in a multi-tiered cache no longer helps [4]. Yet very few 
high-end platforms provide a fast enough I/O subsystem. 

High-performance, scalable numerical computation also presents an algorithmic 
challenge. Traditional numerical analysis packages have been designed to operate 
on datasets that fit in RAM. To tackle analyses that are orders of magnitude larger, 
these packages must be redesigned to work in a multi-phase, divide-and-conquer 
manner while maintaining their numerical accuracy. This suggests an approach in 
which a large-scale problem is decomposed into smaller pieces that can be solved in 
RAM, whereas the rest of the dataset resides on disk. This approach is analogous to 
the way in which database algorithms such as sorts or joins work on datasets larger 
than RAM. These challenges are reaching a critical stage.

Buying larger network storage systems and attaching them to clusters of com-
pute nodes will not solve the problem because network/interconnect speeds are 
not growing fast enough to cope with the yearly doubling of the necessary stor-
age. Scale-out solutions advocate simple building blocks in which the data is par-
titioned among nodes with locally attached storage [5]. The smaller and simpler 
these blocks are, the better the balance between CPUs, disks, and networking can 
become. Gray envisaged simple “CyberBricks” where each disk drive has its own 
CPU and networking [6]. While the number of nodes on such a system would be 
much larger than in a traditional “scale-up” architecture, the simplicity and lower 
cost of each node and the aggregate performance would more than make up for the 
added complexity. With the emergence of solid-state disks and low-power mother-
boards, we are on the verge of being able to build such systems [7].

Database-centric computinG

Most scientific data analyses are performed in hierarchical steps. During the first 
pass, a subset of the data is extracted by either filtering on certain attributes (e.g., 
removing erroneous data) or extracting a vertical subset of the columns. In the next 
step, data are usually transformed or aggregated in some way. Of course, in more 
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complex datasets, these patterns are often accompanied by complex joins among 
multiple datasets, such as external calibrations or extracting and analyzing differ-
ent parts of a gene sequence [8]. As datasets grow ever larger, the most efficient way 
to perform most of these computations is clearly to move the analysis functions as 
close to the data as possible. It also turns out that most of these patterns are easily 
expressed by a set-oriented, declarative language whose execution can benefit enor-
mously from cost-based query optimization, automatic parallelism, and indexes. 

Gray and his collaborators have shown on several projects that existing rela-
tional database technologies can be successfully applied in this context [9]. There 
are also seamless ways to integrate complex class libraries written in procedural 
languages as an extension of the underlying database engine [10, 11]. 

MapReduce has become a popular distributed data analysis and computing para-
digm in recent years [12]. The principles behind this paradigm resemble the distrib-
uted grouping and aggregation capabilities that have existed in parallel relational 
database systems for some time. New-generation parallel database systems such as 
Teradata, Aster Data, and Vertica have rebranded these capabilities as “MapReduce 
in the database.” New benchmarks comparing the merits of each approach have 
been developed [13].

connectinG to the scientists

One of the most challenging problems in designing scientific databases is to estab-
lish effective communication between the builder of the database and the domain 
scientists interested in the analysis. Most projects make the mistake of trying to be 
“everything for everyone.” It is clear that that some features are more important 
than others and that various design trade-offs are necessary, resulting in perfor-
mance trade-offs. 

Jim Gray came up with the heuristic rule of “20 queries.” On each project he 
was involved with, he asked for the 20 most important questions the researchers 
wanted the data system to answer. He said that five questions are not enough to 
see a broader pattern, and a hundred questions would result in a shortage of focus. 
Since most selections involving human choices follow a “long tail,” or so-called 1/f 
distribution, it is clear that the relative information in the queries ranked by impor-
tance is logarithmic, so the gain realized by going from approximately 20 (24.5) to 
100 (26.5) is quite modest [14].

The “20 queries” rule is a moniker for a design step that engages the domain 
scientist and the database engineer in a conversation that helps bridge the semantic 
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gap between nouns and verbs used in the scientific domain and the entities and 
relationships stored in the database. Queries define the precise set of questions 
in terms of entities and relationships that domain scientists expect to pose to the 
database. At the end of a full iteration of this exercise, the domain scientist and the 
database speak a common language.

This approach has been very successful in keeping the design process focused 
on the most important features the system must support, while at the same time 
helping the domain scientists understand the database system trade-offs, thereby 
limiting “feature creep.”

Another design law is to move from working version to working version. Gray was 
very much aware of how quickly data-driven computing architecture changes, espe-
cially if it involves distributed data. New distributed computing paradigms come and 
go every other year, making it extremely difficult to engage in a multi-year top-down 
design and implementation cycle. By the time such a project is completed, the start-
ing premises have become obsolete. If we build a system that starts working only if 
every one of its components functions correctly, we will never finish.

The only way to survive and make progress in such a world is to build modular 
systems in which individual components can be replaced as the underlying tech-
nologies evolve. Today’s service-oriented architectures are good examples of this. 
Web services have already gone through several major evolutionary stages, and the 
end is nowhere in sight.

From terascaLe to petascaLe scientiFic Databases

By using Microsoft SQL Server, we have successfully tackled several projects 
on a scale from a few terabytes (TB) to tens of terabytes [15-17]. Implementing  
databases that will soon exceed 100 TB also looks rather straightforward [18], but 
it is not entirely clear how science will cross the petascale barrier. As databases 
become larger and larger, they will inevitably start using an increasingly scaled-
out architecture. Data will be heavily partitioned, making distributed, non-local  
queries and distributed joins increasingly difficult. 

For most of the petascale problems today, a simple data-crawling strategy 
over massively scaled-out, share-nothing data partitions has been adequate  
(MapReduce, Hadoop, etc.). But it is also clear that this layout is very suboptimal 
when a good index might provide better performance by orders of magnitude. Joins 
between tables of very different cardinalities have been notoriously difficult to use 
with these crawlers. 
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Databases have many things to offer in terms of more efficient plans. We also need 
to rethink the utility of expecting a monolithic result set. One can imagine crawlers 
over heavily partitioned databases implementing a construct that can provide results 
one bucket at a time, resulting in easier checkpointing and recovery in the middle of 
an extensive query. This approach is also useful for aggregate functions with a clause 
that would stop when the result is estimated to be within, for example, 99% accu-
racy. These simple enhancements would go a long way toward sidestepping huge 
monolithic queries—breaking them up into smaller, more manageable ones.

Cloud computing is another recently emerging paradigm. It offers obvious ad-
vantages, such as co-locating data with computations and an economy of scale in 
hosting the services. While these platforms obviously perform very well for their 
current intended use in search engines or elastic hosting of commercial Web sites, 
their role in scientific computing is yet to be clarified. In some scientific analysis 
scenarios, the data needs to be close to the experiment. In other cases, the nodes 
need to be tightly integrated with a very low latency. In yet other cases, very high 
I/O bandwidth is required. Each of these analysis strategies would be suboptimal 
in current virtualization environments. Certainly, more specialized data clouds are 
bound to emerge soon. In the next few years, we will see if scientific computing 
moves from universities to commercial service providers or whether it is necessary 
for the largest scientific data stores to be aggregated into one.

concLusions

Experimental science is generating vast volumes of data. The Pan-STARRS project 
will capture 2.5 petabytes (PB) of data each year when in production [18]. The 
Large Hadron Collider will generate 50 to 100 PB of data each year, with about  
20 PB of that data stored and processed on a worldwide federation of national grids 
linking 100,000 CPUs [19]. Yet generic data-centric solutions to cope with this vol-
ume of data and corresponding analyses are not readily available [20].

Scientists and scientific institutions need a template and collection of best prac-
tices that lead to balanced hardware architectures and corresponding software to 
deal with these volumes of data. This would reduce the need to reinvent the wheel. 
Database features such as declarative, set-oriented languages and automatic paral-
lelism, which have been successful in building large-scale scientific applications, 
are clearly needed.

We believe that the current wave of databases can manage at least another order 
of magnitude in scale. So for the time being, we can continue to work. However,  
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it is time to start thinking about the next wave. Scientific databases are an early 
predictor of requirements that will be needed by conventional corporate applica-
tions; therefore, investments in these applications will lead to technologies that 
will be broadly applicable in a few years. Today’s science challenges are good  
representatives of the data management challenges for the 21st century. Gray’s Laws 
represent an excellent set of guiding principles for designing the data-intensive  
systems of the future.
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he science of earth and environment has matured 
through two major phases and is entering a third. In the 
first phase, which ended two decades ago, Earth and en-
vironmental science was largely discipline oriented and 

focused on developing knowledge in geology, atmospheric chem-
istry, ecosystems, and other aspects of the Earth system. In the 
1980s, the scientific community recognized the close coupling of 
these disciplines and began to study them as interacting elements 
of a single system. During this second phase, the paradigm of Earth 
system science emerged. With it came the ability to understand 
complex, system-oriented phenomena such as climate change, 
which links concepts from atmospheric sciences, biology, and hu-
man behavior. Essential to the study of Earth’s interacting systems 
was the ability to acquire, manage, and make available data from 
satellite observations; in parallel, new models were developed to 
express our growing understanding of the complex processes in 
the dynamic Earth system [1].

In the emerging third phase, knowledge developed primarily 
for the purpose of scientific understanding is being complement-
ed by knowledge created to target practical decisions and action. 
This new knowledge endeavor can be referred to as the science of  
environmental applications. Climate change provides the most 
prominent example of the importance of this shift. Until now, the 
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climate science community has focused on critical questions involving basic knowl-
edge, from measuring the amount of change to determining the causes. With the 
basic understanding now well established, the demand for climate applications 
knowledge is emerging. How do we quantify and monitor total forest biomass so 
that carbon markets can characterize supply? What are the implications of regional 
shifts in water resources for demographic trends, agricultural output, and energy 
production? To what extent will seawalls and other adaptations to rising sea level 
impact coasts?

These questions are informed by basic science, but they raise additional issues 
that can be addressed only by a new science discipline focused specifically on ap-
plications—a discipline that integrates physical, biogeochemical, engineering, and 
human processes. Its principal questions reflect a fundamental curiosity about the 
nature of the world we live in, tempered by the awareness that a question’s impor-
tance scales with its relevance to a societal imperative. As Nobel laureate and U.S. 
Secretary of Energy Steven Chu has remarked, “We seek solutions. We don’t seek—
dare I say this?—just scientific papers anymore” [2].

To illustrate the relationships between basic science and applications, consider 
the role of snowmelt runoff in water supplies. Worldwide, 1 billion people depend 
on snow or glacier melt for their water resources [3]. Design and operations of 
water systems have traditionally relied on historical measurements in a station-
ary climate, along with empirical relationships and models. As climates and land 
use change, populations grow and relocate, and our built systems age and decay, 
these empirical methods of managing our water become inaccurate—a conundrum 
characterized as “stationarity is dead” [4]. Snowmelt commonly provides water for 
competing uses: urban and agricultural supply, hydropower, recreation, and eco-
systems. In many areas, both rainfall and snowfall occur, raising the concern that 
a future warmer climate will lead to a greater fraction of precipitation as rain, with 
the water arriving months before agricultural demand peaks and with more rapid 
runoff leading to more floods. In these mixed rain and snow systems, the societal 
need is: How do we sustain flood control and the benefits that water provides to 
humans and ecosystems when changes in the timing and magnitude of runoff are 
likely to render existing infrastructure inadequate?

The solution to the societal need requires a more fundamental, process-based 
understanding of the water cycle. Currently, historical data drive practices and de-
cisions for flood control and water supply systems. Flood operations and reservoir 
flood capacity are predetermined by regulatory orders that are static, regardless 
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of the type of water year, current state of the snowpack, or risk of flood. In many 
years, early snowmelt is not stored because statistically based projections anticipate 
floods that better information might suggest cannot materialize because of the ab-
sence of snow. The more we experience warming, the more frequently this occur-
rence will impact the water supply [5]. The related science challenges are: (1) The 
statistical methods in use do not try to estimate the basin’s water balance, and with 
the current measurement networks even in the U.S., we lack adequate knowledge 
of the amount of snow in the basins; (2) We are unable to partition the input be-
tween rain and snow, or to partition that rain or snow between evapotranspiration 
and runoff; (3) We lack the knowledge to manage the relationship between snow 
cover, forests, and carbon stocks; (4) Runoff forecasts that are not based on physical 
principles relating to snowmelt are often inaccurate; and (5) We do not know what 
incentives and institutional arrangements would lead to better management of the 
watershed for ecosystem services.

Generally, models do not consider these kinds of interactions; hence the need for 
a science of environmental applications. Its core characteristics differentiate it from 
the basic science of Earth and environment:

•	Need driven versus curiosity driven. Basic science is question driven; in con-
trast, the new applications science is guided more by societal needs than scien-
tific curiosity. Rather than seeking answers to questions, it focuses on creating 
the ability to seek courses of action and determine their consequences.

•	Externally constrained. External circumstances often dictate when and how 
applications knowledge is needed. The creation of carbon trading markets will 
not wait until we fully quantify forest carbon content. It will happen on a sched-
ule dictated by policy and economics. Construction and repair of the urban wa-
ter infrastructure will not wait for an understanding of evolving rainfall pat-
terns. Applications science must be prepared to inform actions subject to these 
external drivers, not according to academic schedules based on when and how 
the best knowledge can be obtained.

•	Consequential and recursive. Actions arising from our knowledge of the Earth 
often change the Earth, creating the need for new knowledge about what we 
have changed. For example, the more we knew in the past about locations of fish 
populations, the more the populations were overfished; our original knowledge 
about them became rapidly outdated through our own actions. Applications sci-



EARTH AND ENVIRONMENT1 6

ence seeks to understand not just those aspects of the Earth addressed by a par-
ticular use scenario, but also the consequences and externalities that result from 
that use scenario. A recent example is the shift of agricultural land to corn-for-
ethanol production—an effort to reduce climate change that we now recognize 
as significantly stressing scarce water resources.

•	Useful even when incomplete. As the snowpack example illustrates, actions 
are often needed despite incomplete data or partial knowledge. The difficulty of 
establishing confidence in the quality of our knowledge is particularly discon-
certing given the loss of stationarity associated with climate change. New means 
of making effective use of partial knowledge must be developed, including ro-
bust inference engines and statistical interpretation.

•	Scalable. Basic science knowledge does not always scale to support applications 
needs. The example of carbon trading presents an excellent illustration. Basic 
science tells us how to relate carbon content to measurements of vegetation type 
and density, but it does not give us the tools that scale this to a global inventory. 
New knowledge tools must be built to accurately create and update this inven-
tory through cost-effective remote sensing or other means.

•	Robust. The decision makers who apply applications knowledge typically have 
limited comprehension of how the knowledge was developed and in what situ-
ations it is applicable. To avoid misuse, the knowledge must be characterized 
in highly robust terms. It must be stable over time and insensitive to individual 
interpretations, changing context, and special conditions.

•	Data intensive. Basic science is data intensive in its own right, but data sources 
that support basic science are often insufficient to support applications. Local-
ized impacts with global extent, such as intrusion of invasive species, are often 
difficult for centralized projects with small numbers of researchers to ascer-
tain. New applications-appropriate sources must be identified, and new ways  
of observing (including the use of communities as data gatherers) must be  
developed.

Each of these characteristics implies development of new knowledge types and 
new tools for acquiring that knowledge. The snowpack example illustrates what this 
requirement means for a specific application area. Four elements have recently 
come together that make deployment of a measurement and information system 
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that can support decisions at a scale of a large river basin feasible: (1) accurate, 
sustained satellite estimates of snow-covered area across an entire mountain range; 
(2) reliable, low-cost sensors and telemetry systems for snow and soil moisture;  
(3) social science data that complement natural and engineered systems data to en-
able analysis of human decision making; and (4) cyberinfrastructure advances to 
integrate data and deliver them in near real time.

 For snow-dominated drainage basins, the highest-priority scientific challenge is 
to estimate the spatial distribution and heterogeneity of the snow water equivalent—
i.e., the amount of water that would result if the snow were to melt. Because of wind 
redistribution of snow after it falls, snow on the ground is far more heterogeneous 
than rainfall, with several meters of differences within a 10 to 100 m distance. Het-
erogeneity in snow depth smoothes the daily runoff because of the variability of the 
duration of meltwater in the snowpack [6]; seasonally, it produces quasi-riparian 
zones of increased soil moisture well into the summer. The approach to estimating 
the snow water equivalent involves several tasks using improved data: (1) extensive 
validation of the satellite estimates of snow cover and its reflectivity, as Figure 1 on 
the next page shows; (2) using results from an energy balance reconstruction of 
snow cover to improve interpolation from more extensive ground measurements 
and satellite data [7]; (3) development of innovative ways to characterize hetero-
geneity [8]; and (4) testing the interpolated estimates with a spatially distributed 
runoff model [9]. The measurements would also help clarify the accuracy in pre-
cipitation estimates from regional climate models.

This third phase of Earth and environmental science will evolve over the next 
decade as the scientific community begins to pursue it. Weather science has already 
built substantial capability in applications science; the larger field of Earth science 
will need to learn from and extend those efforts. The need for basic science and 
further discovery will not diminish, but instead will be augmented and extended 
by this new phase. The questions to address are both practically important and 
intellectually captivating. Will our hydrologic forecasting skill decline as changes 
in precipitation diminish the value of statistics obtained from historic patterns? 
Where will the next big climate change issue arise, and what policy actions taken 
today could allow us to anticipate it? 

Equally important is improving how we apply this knowledge in our daily lives. 
The Internet and mobile telephones, with their global reach, provide new ways 
to disseminate information rapidly and widely. Information was available to avoid 
much of the devastation from the Asian tsunami and Hurricane Katrina, but we 
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lacked the tools for rapid decision making and communication of needed actions. 
Applications science is therefore integrative; it couples understanding of physical 
phenomena and research into the ways that people and organizations can use better 
knowledge to make decisions. The public as a whole can also become an important 
contributor to localized Earth observation, augmenting our limited satellite and 
sensor networks through devices as simple as mobile phone cameras. The ability to 
leverage this emerging data-gathering capability will be an important challenge for 
the new phase of environmental science. 

The security and prosperity of nearly 7 billion people depend increasingly on our 
ability to gather and apply information about the world around us. Basic environ-
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FIGURE 1.

An illustration of the type of data that are useful in analyzing the snow cover. The left panel shows 
elevations of the Sierra Nevada and Central Valley of California, along with a portion of northwest-
ern Nevada. The middle panel shows the raw satellite data in three spectral bands (0.841–0.876, 
0.545–0.565, and 0.459–0.479 μm) from NASA’s Moderate Resolution Imaging Spectroradiometer 
(MODIS), which provides daily global data at 250 to 1000 m resolution in 36 spectral bands. From 
seven “land” bands at 500 m resolution, we derive the fractional snow-covered area—i.e., the frac-
tion of each 500 m grid cell covered by snow, shown in the right panel [10].
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mental science has established an excellent starting point. We must now develop 
this into a robust science of environmental applications.
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cology is the study of life and its interactions with the 
physical environment. Because climate change requires 
rapid adaptation, new data analysis tools are essential to 
quantify those changes in the midst of high natural vari-

ability. Ecology is a science in which studies have been performed 
primarily by small groups of individuals, with data recorded and 
stored in notebooks. But large synthesis studies are now being at-
tempted by collaborations involving hundreds of scientists. These 
larger efforts are essential because of two developments: one in 
how science is done and the other in the resource management 
questions being asked. While collaboration synthesis studies are 
still nascent, their ever-increasing importance is clear. Computa-
tional support is integral to these collaborations and key to the 
scientific process.

how GLobaL chanGes are chanGinG ecoLoGicaL science

The global climate and the Earth’s landscape are changing, and 
scientists must quantify significant linkages between atmo-
spheric, oceanic, and terrestrial processes to properly study the 
phenomena. For example, scientists are now asking how climate 
fluctuations in temperature, precipitation, solar radiation, length 
of growing season, and extreme weather events such as droughts 
affect the net carbon exchange between vegetation and the atmo-
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sphere. This question spans many Earth science disciplines with their respective 
data, models, and assumptions. 

These changes require a new approach to resolving resource management ques-
tions. In the short run of the next few decades, ecosystems cannot be restored to 
their former status. For example, with a warming climate on the West Coast of 
the United States, can historical data from coastal watersheds in southern Califor-
nia be used to predict the fish habitats of northern California coastal watersheds? 
Similarly, what can remote sensing tell us about deforestation? Addressing these 
challenges requires a synthesis of data and models that spans length scales from 
the very local (river pools) to the global (oceanic circulations) and spans time scales 
from a few tens of milliseconds to centuries.

an exampLe oF ecoLoGicaL synthesis 

Figure 1 shows a simple “science mash-
up” example of a synthesis study. The 
graph compares annual runoff from 
relatively small watersheds in the foot-
hills of the Sierra Nevada in California 
to local annual precipitation over mul-
tiple years. Annual runoff values were 
obtained from the U.S. Geological Sur-
vey (USGS) for three of the gauging sta-
tions along Dry Creek and the Schubert 
University of California experimental 
field site.1 Long-term precipitation rec-
ords from nearby rain gauges were ob-
tained from the National Climatic Data 
Center.2  The precipitation that does not 
run off undergoes evapotranspiration 
(ET) that is largely dominated by water-
shed vegetation. In these watersheds, a 
single value of 400 mm is observed over 
all years of data. A similar value of an-
nual ET was obtained by independent 

FIGURE 1.

Simple annual water balance to estimate 
evapotranspiration in Sierra Nevada foothill 
watersheds. The dashed line represents an 
annual ET of 400 mm.

1 http://waterdata.usgs.gov/nwis
2 www.ncdc.noaa.gov
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measurement from atmospheric sensors deployed over an oak savannah ecosystem 
at the AmeriFlux Tonzi Ranch tower.3 This synthesis of historical data defines a  
watershed model appropriate for historical conditions and provides a reference 
frame for addressing climate change effects in a highly variable system. 

the cominG FLooD oF ecoLoGicaL Data 

These new synthesis studies are enabled by the confluence of low-cost sensors, 
remote sensing, Internet connectivity, and commodity computing. Sensor deploy-
ments by research groups are shifting from short campaigns to long-term monitor-
ing with finer-scale and more diverse instruments. Satellites give global coverage 
particularly to remote or harsh regions where field research is hampered by physi-
cal and political logistics. Internet connectivity is enabling data sharing across or-
ganizations and disciplines. The result of these first three factors is a data flood. 
Commodity computing provides part of the solution, by allowing for the flood to 
be paired with models that incorporate different physical and biological processes 
and allowing for different models to be linked to span the length and time scales 
of interest.

The flood of ecological data and ecological science synthesis presents unique 
computing infrastructure challenges and new opportunities. Unlike sciences such 
as physics or astronomy, in which detectors are shared, in ecological science data 
are generated by a wide variety of groups using a wide variety of sampling or simu-
lation methodologies and data standards. As shown earlier in Figure 1, the use of 
published data from two different sources was essential to obtain evapotranspira-
tion. This synthesis required digital access to long records, separate processing of 
those datasets to arrive at ET, and finally verification with independent flux tower 
measurements. Other synthetic activities will require access to evolving resources 
from government organizations such as NASA or USGS, science collaborations 
such as the National Ecological Observatory Network and the WATERS Network,4 

individual university science research groups such as Life Under Your Feet,5 and 
even citizen scientist groups such as the Community Collaborative Rain, Hail and 
Snow Network6 and the USA National Phenology Network.7  

While the bulk of the data start out as digital, originating from the field sensor, 

3 www.fluxdata.org:8080/SitePages/siteInfo.aspx?US-Ton
4 www.watersnet.org 
5 www.lifeunderyourfeet.org
6 www.cocorahs.org
7 www.usanpn.org 
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radar, or satellite, the historic data and field data, which are critical for the science, 
are being digitized. The latter data are not always evenly spaced time series; they can 
include the date of leaf budding, or aerial imagery at different wavelengths and reso-
lutions to assess quantities throughout the watershed such as soil moisture, vegeta-
tion, and land use. Deriving science variables from remote sensing remains an active 
area of research; as such, hard-won field measurements often form the ground truth 
necessary to develop conversion algorithms. Citizen science field observations such 
as plant species, plant growth (budding dates or tree ring growth, for example), and 
fish and bird counts are becoming increasingly important. Integrating such diverse 
information is an ever-increasing challenge to science analysis.

naviGatinG the ecoLoGicaL Data FLooD

The first step in any ecological science analysis is data discovery and harmoniza-
tion. Larger datasets are discoverable today; smaller and historic datasets are often 
found by word of mouth. Because of the diversity of data publishers, no single re-
porting protocol exists. Unit conversions, geospatial reprojections, and time/length 
scale regularizations are a way of life. Science data catalog portals such as Sci-
Scope8 and Web services with common data models such as those from the Open 
Geospatial Consortium9 are evolving.

Integral to these science data search portals is knowledge of geospatial features 
and variable namespace mediation. The first enables searches across study water-
sheds or geological regions as well as simple polygon bounding boxes. The second 
enables searches to include multiple search terms—such as “rainfall,” “precipita-
tion,” and “precip”—when searching across data repositories with different nam-
ing conventions. A new generation of metadata registries that use semantic Web 
technologies will enable richer searches as well as automated name and unit con-
versions. The combination of both developments will enable science data searches 
such as “Find me the daily river flow and suspended sediment discharge data from 
all watersheds in Washington State with more than 30 inches of annual rainfall.”

movinG ecoLoGicaL synthesis into the cLouD

Large synthesis datasets are also leading to a migration from the desktop to cloud 
computing. Most ecological science datasets have been collections of files. An ex-
ample is the Fluxnet LaThuile synthesis dataset, containing 966 site-years of sensor 

8 www.sciscope.org
9 www.opengeospatial.org
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data from 253 sites around the world. The data for each site-year is published as a 
simple comma-separated or MATLAB-ready file of either daily aggregates or half-
hourly aggregates. Most of the scientists download some or all of the files and then 
perform analyses locally. Other scientists are using an alternative cloud service that 
links MATLAB on the desktop to a SQL Server Analysis Services data cube in the 
cloud. The data appears local, but the scientists need not be bothered with the 
individual file handling. Local download and manipulation of the remote sensing 
data that would complement that sensor data are not practical for many scientists. 
A cloud analysis now in progress using both to compute changes in evapotranspi-
ration across the United States over the last 10 years will download 3 terabytes of 
imagery and use 4,000 CPU hours of processing to generate less than 100 MB of 
results. Doing the analysis off the desktop leverages the higher bandwidth, large 
temporary storage capacity, and compute farm available in the cloud.

Synthesis studies also create a need for collaborative tools in the cloud. Science 
data has value for data-owner scientists in the form of publications, grants, reputa-
tion, and students. Sharing data with others should increase rather than decrease 
that value. Determining the appropriate citations, acknowledgment, and/or co- 
authorship policies for synthesis papers remains an open area of discussion in larger 
collaborations such as Fluxnet10 and the North American Carbon Program.11 Jour-
nal space and authorship limitations are an important concern in these discussions. 
Addressing the ethical question of what it means to be a co-author is essential: Is 
contributing data sufficient when that contribution is based on significant intellec-
tual and physical effort? Once such policies are agreed upon, simple collaborative 
tools in the cloud can greatly reduce the logistics required to publish a paper, pro-
vide a location for the discovery of collaboration authors, and enable researchers to 
track how their data are used.

how cyberinFrastructure is chanGinG ecoLoGicaL science

The flood of ecological data will break down scientific silos and enable a new gen-
eration of scientific research. The goal of understanding the impacts of climate 
change is driving research that spans disciplines such as plant physiology, soil sci-
ence, meteorology, oceanography, hydrology, and fluvial geomorphology. Bridging 
the diverse length and time scales involved will require a collection of cooperating 
models. Synthesizing the field observations with those model results at key length 

10 www.fluxdata.org
11 www.nacarbon.org/nacp
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and time scales is crucial to the development and validation of such models. 
The diversity of ecological dataset size, dataset semantics, and dataset publisher 

concerns poses a cyberinfrastructure challenge that will be addressed over the next 
several years. Synthesis science drives not only direct conversations but also virtual 
ones between scientists of different backgrounds. Advances in metadata represen-
tation can break down the semantic and syntactic barriers to those conversations. 
Data visualizations that range from our simple mashup to more complex virtual 
worlds are also key elements in those conversations. Cloud access to discoverable, 
distributed datasets and, perhaps even more important, enabling cloud data analy-
ses near the more massive datasets will enable a new generation of cross-discipline 
science. 
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he global ocean is the last physical frontier on Earth. 
Covering 70 percent of the planetary surface, it is the 
largest, most complex biome we know. The ocean is a 
huge, mobile reservoir of heat and chemical mass. As 

such, it is the “engine” that drives weather-climate systems across 
the ocean basins and the continents, directly affecting food pro-
duction, drought, and flooding on land. Water is effectively opaque 
to electromagnetic radiation, so the seafloor has not been as well 
mapped as the surfaces of Mars and Venus, and although the spa-
tial relationships within the ocean basins are well understood to 
a first order, the long- and short-term temporal variations and the 
complexities of ocean dynamics are poorly understood. 

The ultimate repository of human waste, the ocean has ab-
sorbed nearly half of the fossil carbon released since 1800. The 
ocean basins are a source of hazards: earthquakes, tsunamis, and 
giant storms. These events are episodic, powerful, often highly 
mobile, and frequently unpredictable. Because the ocean basins 
are a vast, but finite, repository of living and non-living resources, 
we turn to them for food, energy, and the many minerals neces-
sary to sustain a broad range of human lifestyles. Many scientists 
believe that underwater volcanoes were the crucible in which ear-
ly life began on Earth and perhaps on other planets. The oceans 
connect all continents; they are owned by no one, yet they belong 

JOHN R . DElANEY 
University of Washington

ROGER S . BARGA 
Microsoft Research

A 2020 Vision for  
Ocean Science

E ARTH AN D ENVI RO N M ENTE ARTH AN D ENVI RO N M ENT



EARTH AND ENVIRONMENT2 8

to all of us by virtue of their mobile nature. The oceans may be viewed as the com-
mon heritage of humankind, the responsibility and life support of us all.

ocean compLexity 

Our challenge is to optimize the benefits and mitigate the risks of living on a plan-
et dominated by two major energy sources: sunlight driving the atmosphere and 
much of the upper ocean, and internal heat driving plate tectonics and portions of 
the lower ocean. For more than 4 billion years, the global ocean has responded to 
and integrated the impacts of these two powerful driving forces as the Earth, the 
oceans, the atmosphere, and life have co-evolved. As a consequence, our oceans 
have had a long, complicated history, producing today’s immensely complex sys-
tem in which thousands of physical, chemical, and biological processes continually 
interact over many scales of time and space as the oceans maintain our planetary-
scale ecological “comfort zone.”

Figure 1 captures a small fraction of this complexity, which is constantly driven 
by energy from above and below. Deeper understanding of this “global life-support 
system” requires entirely novel research approaches that will allow broad spectrum, 
interactive ocean processes to be studied simultaneously and interactively by many 
scientists—approaches that enable continuous in situ examination of linkages among 
many processes in a coherent time and space framework. Implementing these pow-
erful new approaches is both the challenge and the vision of next-generation ocean  
science.

historicaL perspective

For thousands of years, humans have gone to sea in ships to escape, to conquer, to 
trade, and to explore. Between October 1957 and January 1960, we launched the 
first Earth-orbiting satellite and dove to the deepest part of the ocean. Ships, satel-
lites, and submarines have been the mainstays of spatially focused oceanographic 
research and exploration for the past 50 years. We are now poised on the next 
threshold of technological breakthrough that will advance oceanic discovery; this 
time, exploration will be focused on the time domain and interacting processes. 
This new era will draw deeply on the emergence, and convergence, of many rapidly 
evolving new technologies. These changes are setting the scene for what Marcel 
Proust called “[t]he real voyage of discovery, [which] lies not in seeking new land-
scapes, but in having new eyes.”

In many ways, this “vision” of next-generation oceanographic research and  
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FIGURE 1.

Two primary energy sources powerfully influence the ocean basins: sunlight and its radiant 
energy, and internal heat with its convective and conductive input. Understanding the complexity 
of the oceans requires documenting and quantifying—in a well-defined time-space framework over 
decades—myriad processes that are constantly changing and interacting with one another.

Illustration designed by John Delaney and Mark Stoermer;  
created by the Center for Environmental Visualization (CEV) for the NEPTUNE Program.
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education involves utilizing a wide range of innovative technologies to simultane-
ously and continuously “see,” or sense, many different processes operating through-
out entire volumes of the ocean from a perspective within the ocean. Some of these 
same capabilities will enable remote in situ detection of critical changes taking 
place within selected ocean volumes. Rapid reconfiguration of key sensor arrays 
linked to the Internet via submarine electro-optical cables will allow us to capture, 
image, document, and measure energetic and previously inaccessible phenomena 
such as erupting volcanoes, major migration patterns, large submarine slumps, big 
earthquakes, giant storms, and a host of other complex phenomena that have been 
largely inaccessible to scientific study. 

the Fourth paraDiGm 

The ocean has been chronically under-sampled for as long as humans have been 
trying to characterize its innate complexity. In a very real sense, the current suite 
of computationally intensive numerical/theoretical models of ocean behavior has 
outstripped the requisite level of actual data necessary to ground those models in 
reality. As a consequence, we have been unable to even come close to useful pre-
dictive models of the real behavior of the oceans. Only by quantifying powerful 
episodic events, like giant storms and erupting volcanoes, within the context of 
longer-term decadal changes can we begin to approach dependable predictive mod-
els of ocean behavior. Over time, as the adaptive models are progressively refined 
by continual comparison with actual data flowing from real systems, we slowly 
gain the ability to predict the future behavior of these immensely complex natural 
systems. To achieve that goal, we must take steps to fundamentally change the way 
we approach oceanography.

This path has several crucial steps. We must be able to document conditions 
and measure fluxes within the volume of the ocean, simultaneously and in real time, 
over many scales of time and space, regardless of the depth, energy, mobility, or 
complexity of the processes involved. These measurements must be made using co- 
located arrays of many sensor types, operated by many investigators over periods of 
decades to centuries. And the data must be collected, archived, visualized, and com-
pared immediately to model simulations that are explicitly configured to address 
complexity at scales comparable in time and space to the actual measurements. 

This approach offers three major advantages: (1) The models must progressively 
emulate the measured reality through constant comparison with data to capture 
the real behavior of the oceans in “model space” to move toward more predictive 
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simulations; (2) When the models and the data disagree, assuming the data are 
valid, we must immediately adapt at-sea sensor-robot systems to fully characterize 
the events that are unfolding because they obviously offer new insights into the 
complexities we seek to capture in the failed models; (3) By making and archiving 
all observations and measurements in coherently indexed time and space frame-
works, we can allow many investigators (even those not involved in the data collec-
tion) to examine correlations among any number of selected phenomena during, 
or long after, the time that the events or processes occur. If the archived data are 
immediately and widely available via the Internet, the potential for discovery rises 
substantially because of the growing number of potential investigators who can ex-
plore a rapidly expanding spectrum of “parameter space.” For scientists operating 
in this data-intensive environment, there will be a need for development of a new 
suite of scientific workflow products that can facilitate the archiving, assimilation, 
visualization, modeling, and interpretation of the information about all scientific 
systems of interest. Several workshop reports that offer examples of these “work-
flow products” are available in the open literature [1, 2].

emerGence anD converGence 

Ocean science is becoming the beneficiary of a host of powerful emergent tech-
nologies driven by many communities that are entirely external to the world of 
ocean research—they include, but are not limited to, nanotechnology, biotechnol-
ogy, information technology, computational modeling, imaging technologies, and 
robotics. More powerful yet will be the progressive convergence of these enabling 
capabilities as they are adapted to conduct sophisticated remote marine operations 
in novel ways by combining innovative technologies into appropriate investigative 
or experimental systems.

For example, computer-enabled support activities must include massive data 
storage systems, cloud computing, scientific workflow, advanced visualization dis-
plays, and handheld supercomputing. Instead of batteries and satellites being used 
to operate remote installations, electrical power and the vast bandwidth of optical 
fiber will be used to transform the kinds of scientific and educational activities 
that can be conducted within the ocean. Adaptation of industry-standard electro- 
optical cables for use in oceanographic research can fundamentally change the na-
ture of human telepresence throughout the full volume of the oceans by introduc-
ing unprecedented but routinely available power and bandwidth into “ocean space.” 
High-resolution optical and acoustic sensing will be part of the broader technology 
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of “ocean imaging systems.” These approaches will include routine use of high- 
definition video, in stereo if needed, as well as high-resolution sonar, acoustic 
lenses, laser imaging, and volumetric sampling. Advanced sensor technologies will 
include chemical sensing using remote, and mobile, mass spectrometers and gas 
chromatographs, eco-genomic analysis, and adaptive sampling techniques. 

an inteGrateD approach 

After decades of planning [3, 4], the U.S. National Science Foundation (NSF) is on 
the verge of investing more than US$600 million over 6 years in the construction 
and early operation of an innovative infrastructure known as the Ocean Observa-
tories Initiative (OOI) [4]. The design life of the program is 25 years. In addition to 
making much-needed high-latitude and coastal measurements supported by rela-
tively low-bandwidth satellite communications systems, this initiative will include 
a transformative undertaking to implement electro-optically cabled observing sys-
tems in the northeast Pacific Ocean [5-7] off the coasts of Washington, Oregon, and 
British Columbia, as illustrated in Figure 2.1 

These interactive, distributed sensor networks in the U.S. and Canada will cre-
ate a large-aperture “natural laboratory” for conducting a wide range of long-term 
innovative experiments within the ocean volume using real-time control over the 
entire “laboratory” system. Extending unprecedented power and bandwidth to a 
wide range of interactive sensors, instruments, and robots distributed throughout 
the ocean water, at the air-sea interface, on the seafloor, and below the seafloor 
within drill holes will empower next-generation creativity and exploration of the 
time domain among a broad spectrum of investigators. The University of Washing-
ton leads the cabled component of the NSF initiative, known as the Regional Scale 
Nodes (formerly known, and funded, as NEPTUNE); the University of Victoria 
leads the effort in Canada, known as NEPTUNE Canada. The two approaches were 
conceived jointly in 2000 as a collaborative U.S.-Canadian effort. The Consortium 
for Ocean Leadership in Washington, D.C., is managing and integrating the entire 
OOI system for NSF. Woods Hole Oceanographic Institution and the University of 
California, San Diego, are responsible for overseeing the Coastal-Global and Cyber-
Infrastructure portions of the program, respectively. Oregon State University and 
Scripps Institution of Oceanography are participants in the Coastal-Global portion 
of the OOI.

1 www.interactiveoceans.ocean.washington.edu
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The cabled ocean observatory approach will revolutionize ocean science by pro-
viding interactive access to ocean data and instruments 24/7/365 over two to three 
decades. More than 1,200 kilometers of electro-optical submarine cable will de-
liver many tens of kilowatts of power to seafloor nodes, where instruments that 
might spread over a 50 km radius for each node will be plugged in directly or via 
secondary extension cables. The primary cable will provide between 2.5 and 10 
gigabit/sec bandwidth connectivity between land and a growing number of fixed 
sensor packages and mobile sensor platforms. We expect that a host of novel ap-
proaches to oceanography will evolve based on the availability of in situ power and 
bandwidth. A major benefit will be the real-time data return and command-control 
of fleets of remotely operated vehicles (ROVs) and autonomous underwater vehicles 

FIGURE 2.

A portion of the OOI focuses on the dynamic behavior of the Juan de Fuca Plate and the energetic pro-
cesses operating in the overlying ocean and atmosphere. Recent modifications in the Regional Scale 
Nodes (RSN) have focused on delivery of the elements shown in red, and the pink components are 
future expansion. The inset shows the crest of Axial Seamount along the active Juan de Fuca Ridge. 
Each square block site will provide unprecedented electrical power and bandwidth available for 
research and education. Many of the processes shown in Figure 1 can be examined at the sites here.                          

Image created by CEV for OOI-RSN.
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(AUVs). The infrastructure will be adaptable, expandable, and exportable to inter-
ested users. Data policy for the OOI calls for all information to be made available 
to all interested users via the Internet (with the exception of information bearing 
on national security). 

Hardwired to the Internet, the cabled observatories will provide scientists, 
students, educators, and the public with virtual access to remarkable parts of our 
planet that are rarely visited by humans. In effect, the Internet will be extended 
to the seafloor, with the ability to interact with a host of instruments, including 
HD video live from the many environments within the oceans, as illustrated in  
Figure 3. The cabled observatory systems will be able to capture processes at the 
scale of the tectonic plate, mesoscale oceanic eddies, or even smaller scales. Re-
search into representative activities responsible for climate change, major biologi-
cal productivity at the base of the food chain, or encroaching ocean acidification (to 
name a few) will be readily conducted with this new infrastructure. Novel studies 

FIGURE 3.

Next-generation scientists or citizens. This virtual picture shows a deep ocean octopus, known as 
Grimpoteuthis, and a portion of a submarine hydrothermal system on the Juan de Fuca Ridge. 
Such real-time displays of 3-D HD video will be routine within 5 years. 

Graphic designed by Mark Stoermer and created by CEV for NEPTUNE in 2005.



3 5THE FOURTH PARADIGM

of mid-ocean spreading centers, transform faults, and especially processes in the 
subduction zone at the base of the continental slope, which may trigger massive 
earthquakes in the Pacific Northwest, will also be addressable using the same in-
vestment in the same cabled infrastructure. 

This interactive ocean laboratory will be enabled by a common cyberinfrastruc-
ture that integrates multiple observatories, thousands of instruments, tens of thou-
sands of users, and petabytes of data. The goals of the cabled ocean observatory can 
be achieved only if the at-sea portion is complemented by state-of-the-art informa-
tion technology infrastructure resulting from a strong collaborative effort between 
computer scientists and ocean scientists. Such collaboration will allow scientists to 
interact with the ocean through real-time command and control of sensors; provide 
models with a continuous data feed; automate data quality control and calibration; 
and support novel approaches to data management, analysis, and visualization.

what is possibLe? 

Figure 4 on the next page depicts some of the potentially transformative capabili-
ties that could emerge in ocean science by 2020. In the long term, a key element of 
the introduction of unprecedented power and bandwidth for use within the ocean 
basins will be the potential for bold and integrative designs and developments that 
enhance our understanding of, and perhaps our ability to predict, the behavior of 
Earth, ocean, and atmosphere interactions and their bearing on a sustainable plan-
etary habitat. 

concLusion 

The cabled ocean observatory merges dramatic technological advancements in 
sensor technologies, robotic systems, high-speed communication, eco-genomics, 
and nanotechnology with ocean observatory infrastructure in ways that will sub-
stantially transform the approaches that scientists, educators, technologists, and 
policymakers take in interacting with the dynamic global ocean. Over the coming 
decades, most nations will implement systems of this type in the offshore exten-
sions of their territorial seas. As these systems become more sophisticated and data 
become routinely available via the Internet, the Internet will emerge as the most 
powerful oceanographic research tool on the planet. In this fashion, the legacy of 
Jim Gray will continue to grow as we learn to discover truths and insights within 
the data we already have “in the can.” 

While the cabled observatory will have profound ramifications for the manner 
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FIGURE 4.

Some of the transformative developments that could become routine within 5 years with the added 
power of a cabled support system. The top image shows miniaturized genomic analysis systems 
adapted from land laboratories to the ocean to allow scientists, with the flip of a switch in their 
lab hundreds of miles away, to sample ambient flow remotely and run in situ gene sequencing 
operations within the ocean. The data can be made available on the Internet within minutes of the 
decision to sample microbes in an erupting submarine volcanic plume or a seasonally driven phy-
toplankton bloom. The lower part shows a conceptual illustration of an entire remote analytical-
biological laboratory on the seafloor that allows a variety of key measurements or dissections to be 
made in situ using stereo high-definition video to guide high-precision remote manipulations. 

Scientific concepts by Ginger Armbrust and John Delaney; graphic design by Mark Stoermer for CEV.
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in which scientists, engineers, and educators conduct their professional activities, 
the most far-reaching effects may be a significant shift in public attitudes toward 
the oceans as well as toward the scientific process. The real-time data and high-
speed communications inherent in cabled remote observing systems will also open 
entirely new avenues for the public to interact with the natural world. 

In the final analysis, having predictive models of how the ocean functions based 
on decades of refining sophisticated computer simulations against high-quality 
observations from distributed sensor networks will form the basis for learning to 
manage, or at least adapt to, the most powerful climate modulating system on the 
planet—the global ocean. 

acknowLeDGments 

We gratefully acknowledge the significant influence of Jim Gray, who unflinch-
ingly stated that this cabled ocean observing approach using high-bandwidth and 
real-time data flow would be integral to human progress and understanding of the 
world we live in. We are also pleased to acknowledge the support of the University 
of Washington, the National Science Foundation, the Consortium for Ocean Lead-
ership, and the Microsoft External Research group for technical collaboration and 
financial support. NSF and the National Oceanographic Partnership Program were 
particularly supportive of the early development of the NEPTUNE concept from 
1998 to 2005, through grants to J. R. Delaney. Deborah Kelley, Nancy Penrose, and 
Mark Stoermer contributed significantly to the preparation of this manuscript and 
to conversations bearing on the content.

REFERENCES

 [1] “Project Trident: A Scientific Workflow Workbench Brings Clarity to Data,” 
http://research.microsoft.com/en-us/collaboration/focus/e3/workflowtool.aspx.

 [2] Two URLs for the NSF Workshop on Challenges of Scientific Workflows: 
http://grids.ucs.indiana.edu/ptliupages/publications/IEEEComputer-gil.pdf 
http://vtcpc.isi.edu/wiki/index.php/Main_Page.

  [3] National Research Council of the National Academies, Enabling Ocean Research in the 21st  
Century: Implementation of a Network of Ocean Observatories. Washington, D.C.: National  
Academies Press, 2003, p. 220.

 [4] “Ocean Observatories Initiative (OOI) Scientific Objectives and Network Design: A 
Closer Look,” 2007, http://ooi.ocean.washington.edu/cruise/cruiseFile/show/40. Ocean  
Leadership Web site for the Ocean Observatories Initiative: www.oceanleadership.org/ 
programs-and-partnerships/ocean-observing/ooi.

 [5] J. R. Delaney, F. N. Spiess, S. C. Solomon, R. Hessler, J. L. Karsten, J. A. Baross, R. T. Holcomb, 
D. Norton, R. E. McDuff, F. L. Sayles, J. Whitehead, D. Abbott, and L. Olson, “Scientific rationale 
for establishing long-term ocean bottom observatory/laboratory systems,” in Marine Minerals: 

www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi
www.oceanleadership.org/programs-and-partnerships/ocean-observing/ooi


EARTH AND ENVIRONMENT3 8

Resource Assessment Strategies, P. G. Teleki, M. R. Dobson, J. R. Moor, and U. von Stackelberg, 
Eds., 1987, pp. 389–411.

 [6]  J. R. Delaney, G. R. Heath, A. D. Chave, B. M. Howe, and H. Kirkham, “NEPTUNE: Real-time 
ocean and earth sciences at the scale of a tectonic plate,” Oceanography, vol. 13, pp. 71–83, 2000, 
doi: 10.1109/OCEANS.2001.968033.

 [7]  A. D. Chave, B. St. Arnaud, M. Abbott, J. R. Delaney, R. Johnson, E. Lazowska, A. R.  
Maffei, J. A. Orcutt, and L. Smarr, “A management concept for ocean observatories based on 
web services,” Proc. Oceans’04/Techno-Ocean’04, Kobe, Japan, Nov. 2004, p. 7, doi: 10.1109/
OCEANS.2004.1406486.



T

3 9THE FOURTH PARADIGM

E ARTH AN D ENVI RO N M ENT

hroughout history, astronomers have been accustomed 
to data falling from the sky. But our relatively newfound 
ability to store the sky’s data in “clouds” offers us fascinat-
ing new ways to access, distribute, use, and analyze data, 

both in research and in education. Here we consider three inter-
related questions: (1) What trends have we seen, and will soon 
see, in the growth of image and data collection from telescopes?  
(2) How might we address the growing challenge of finding the 
proverbial needle in the haystack of this data to facilitate scientific 
discovery? (3) What visualization and analytic opportunities does 
the future hold?

trenDs in Data Growth 

Astronomy has a history of data collection stretching back at least 
to Stonehenge more than three millennia ago. Over time, the 
format of the information recorded by astronomers has changed, 
from carvings in stone to written records and hand-drawn illustra-
tions to photographs to digital media. 

While the telescope (c. 1600) and the opening up of the electro-
magnetic spectrum beyond wavelengths visible to the human eye 
(c. 1940) led to qualitative changes in the nature of astronomical 
investigations, they did not increase the volume of collected data 
nearly as much as did the advent of the Digital Age. 
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Charge-coupled devices (CCDs), which came into widespread use by the 1980s, 
and equivalent detectors at non-optical wavelengths became much more efficient 
than traditional analog media (such as photographic plates). The resulting rise in 
the rate of photon collection caused the ongoing (and potentially perpetually accel-
erating) increase in data available to astronomers. The increasing capabilities and 
plummeting price of the digital devices used in signal processing, data analysis, and 
data storage, combined with the expansion of the World Wide Web, transformed 
astronomy from an observational science into a digital and computational science. 

For example, the Large Synoptic Survey Telescope (LSST), coming within the 
decade, will produce more data in its first year of operation—1.28 petabytes—than 
any other telescope in history by a significant margin. The LSST will accomplish 
this feat by using very sensitive CCDs with huge numbers of pixels on a relatively 
large telescope with very fast optics (f/1.234) and a wide field of view (9.6 square de-
grees), and by taking a series of many shorter exposures (rather than the traditional 
longer exposures) that can be used to study the temporal behavior of astronomical 
sources. And while the LSST, Pan-STARRS, and other coming astronomical mega-
projects—many at non-optical wavelengths—will produce huge datasets covering 
the whole sky, other groups and individuals will continue to add their own smaller, 
potentially more targeted, datasets.

For the remainder of this article, we will assume that the challenge of managing 
this explosive growth in data will be solved (likely through the clever use of “cloud” 
storage and novel data structures), and we will focus instead on how to offer better 
tools and novel technical and social analytics that will let us learn more about our 
universe.

A number of emerging trends can help us find the “needles in haystacks” of data 
available over the Internet, including crowdsourcing, democratization of access via 
new browsing technologies, and growing computational power.

crowDsourcinG 

The Sloan Digital Sky Survey was undertaken to image, and measure spectra for, 
millions of galaxies. Most of the galaxy images had never been viewed by a human 
because they were automatically extracted from wide-field images reduced in an 
automated pipeline. To test a claim that more galaxies rotate in an anticlockwise 
direction than clockwise, the Sloan team used custom code to create a Web page 
that served up pictures of galaxies to members of the public willing to play the on-
line Galaxy Zoo game, which consists primarily of classifying the handedness of the 
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galaxies. Clever algorithms within the “Zoo” serve the same galaxy to multiple users 
as a reference benchmark and to check up on players to see how accurate they are.

The results from the first year’s aggregated classification of galaxies by the public 
proved to be just as accurate as that done by astronomers. More than 50 million 
classifications of a million galaxies were done by the public in the first year, and 
the claim about right/left handed preference was ultimately refuted. Meanwhile, 
Hanny Van Arkel, a schoolteacher in Holland, found a galaxy that is now the blu-
est known galaxy in the universe. It has come under intense scrutiny by major 
telescopes, including the Very Large Array (VLA) radio telescope, and will soon be 
scrutinized by the Hubble Space Telescope.

DemocratizinG access via new browsinG technoLoGies 

The time needed to acquire data from any astronomical object increases at least 
as quickly as the square of the distance to that object, so any service that can ac-
cumulate custom ensembles of already captured images and data effectively brings 
the night sky closer. The use of archived online data stored in a “data cloud” is fa-
cilitated by new software tools, such as Microsoft’s WorldWide Telescope (WWT), 
which provide intuitive access to images of the night sky that have taken astrono-
mers thousands and thousands of hours of telescope time to acquire.

Using WWT (shown in Figure 1 on the next page), anyone can pan and zoom 
around the sky, at wavelengths from X-ray through radio, and anyone can navigate 
through a three-dimensional model of the Universe constructed from real observa-
tions, just to see what’s there. Anyone can notice an unusual correspondence be-
tween features at multiple wavelengths at some position in the sky and click right 
through to all the published journal articles that discuss that position. Anyone can 
hook up a telescope to the computer running WWT and overlay live, new images on 
top of online images of the same piece of sky at virtually any wavelength. Anyone 
can be guided in their explorations via narrated “tours” produced by WWT users. 
As more and more tours are produced, WWT will become a true “sky browser,” 
with the sky as the substrate for conversations about the universe. Explorers will 
navigate along paths that intersect at objects of common interest, linking ideas and 
individuals. Hopping from tour to tour will be like surfing from Web page to Web 
page now.

But the power of WWT goes far beyond its standalone ability. It is, and will con-
tinue to be, part of an ecosystem of online astronomy that will speed the progress 
of both “citizen” and “professional” science in the coming years.
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Microsoft, through WWT, and Google, through Google Sky, have both cre-
ated API (application programming interface) environments that allow the sky- 
browsing software to function inside a Web page. These APIs facilitate the creation 
of everything from educational environments for children to “citizen science” sites 
and data distribution sites for professional astronomical surveys.

Tools such as Galaxy Zoo are now easy to implement, thanks to APIs. So it now 
falls to the astronomical and educational communities to capitalize on the public’s 
willingness to help navigate the increasing influx of data. High-school students can 
now use satellite data that no one has yet analyzed to make real discoveries about 
the Universe, rather than just sliding blocks down inclined planes in their physics 
class. Amateur astronomers can gather data on demand to fill in missing informa-
tion that students, professionals, and other astronomers ask for online. The collab-
orative and educational possibilities are truly limitless.

The role of WWT and tools like it in the professional astronomy community will 

FIGURE 1.

WorldWide Telescope view of the 30 Doradus region near the Large Magellanic Cloud. 

Image courtesy of the National Optical Astronomy Observatory/National Science Foundation.
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also continue to expand. WWT in particular has already become a better way to 
access all-sky surveys than any extant professional tool. WWT, as part of interna-
tional “virtual observatory” efforts, is being seamlessly linked to quantitative and 
research tools that astronomers are accustomed to, in order to provide a beautiful 
contextual viewer for information that is usually served only piecemeal. And it has 
already begun to restore the kinds of holistic views of data that astronomers were 
used to before the Digital Age chopped up the sky into so many small pieces and 
incompatible formats.

GrowinG computationaL power 

In 10 years, multi-core processors will enhance commodity computing power two 
to three orders of magnitude beyond today’s computers. How will all this comput-
ing power help to address the data deluge? Faster computers and increased stor-
age and bandwidth will of course enable our contemporary approaches to scale to 
larger datasets. In addition, fully new ways of handling and analyzing data will be 
enabled. For example, computer vision techniques are already surfacing in con-
sumer digital cameras with face detection and recognition as common features. 

More computational power will allow us to triage and potentially identify unique 
objects, events, and data outliers as soon as they are detected and route them to 
citizen-scientist networks for confirmation. Engagement of citizen scientists in the 
alerting network for this “last leg” of detection can be optimized through better-
designed interfaces that can transform work into play. Interfaces could potentially 
connect human confirmation of objects with global networks of games and simula-
tions where real-time data is broadly distributed and integrated into real-time mas-
sive multiplayer games that seamlessly integrate the correct identification of the 
objects into the games’ success metrics. Such games could give kids the opportunity 
to raise their social stature among game-playing peers while making a meaningful 
contribution to science.

visuaLization anD anaLysis For the Future 

WWT offers a glimpse of the future. As the diversity and scale of collected data ex-
pand, software will have to become more sophisticated in terms of how it accesses 
data, while simultaneously growing more intuitive, customizable, and compatible. 

The way to improve tools like WWT will likely be linked to the larger challenge 
of how to improve the way visualization and data analysis tools can be used to-
gether in all fields—not just in astronomy.
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Visualization and analysis challenges are more common across scientific fields 
than they are different. Imagine, for example, an astronomer and a climate scien-
tist working in parallel. Both want to study the properties of physical systems as 
observed within a spherical coordinate system. Both want to move seamlessly back 
and forth between, for example, spectral line observations of some sources at some 
specific positions on a sphere (e.g., to study the composition of a stellar atmosphere 
or the CO2 in the Earth’s atmosphere), the context for those positions on the sphere, 
and journal articles and online discussions about these phenomena.

Today, even within a discipline, scientists are often faced with many choices 
of how to accomplish the same subtask in analysis, but no package does all the 
subtasks the way they would prefer. What the future holds is the potential for sci-
entists, or data specialists working with scientists, to design their own software 
by linking componentized, modular applications on demand. So, for example, the 
astronomer and the climate scientist could both use some generalized version of 
WWT as part of a separate, customized system that would link to their favorite 
discipline- or scientist-specific packages for tasks such as spectral-line analysis.

concLusion

The question linking the three topics we have discussed here is, “How can we de-
sign new tools to enhance discovery in the data deluge to come in astronomy?” 
The answer seems to revolve around improved linkage between and among existing  
resources—including citizen scientists willing to help analyze data; accessible image 
browsers such as WWT; and more customized visualization tools that are mashed 
up from common components. This approach, which seeks to more seamlessly 
connect (and reuse) diverse components, will likely be common to many fields of 
science—not just astronomy—in the coming decade.
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E ARTH AN D ENVI RO N M ENT

Increasing environmental challenges worldwide and a grow-
ing awareness of global climate change indicate an urgent need 
for environmental scientists to conduct science in a new and bet-
ter way. Existing large-scale environmental monitoring systems, 

with their coarse spatiotemporal resolution, are not only expen-
sive, but they are incapable of revealing the complex interactions 
between atmospheric and land surface components with enough 
precision to generate accurate environmental system models.

This is especially the case in mountainous regions with highly 
complex surfaces—the source of much of the world’s fresh water 
and weather patterns. The amount of data required to understand 
and model these interactions is so massive (terabytes, and increas-
ing) that no off-the-shelf solution allows scientists to easily man-
age and analyze it. This has led to rapidly growing global collabo-
ration among environmental scientists and computer scientists to 
approach these problems systematically and to develop sensing 
and database solutions that will enable environmental scientists 
to conduct their next-generation experiments.

next-Generation environmentaL science 

The next generation of environmental science, as shown in Fig- 
ure 1, is motivated by the following observations by the atmo-
spheric science community: First, the most prominent challenge 
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in weather and climate prediction is rep-
resented by land-atmosphere interaction 
processes. Second, the average effect of 
a patchy surface on the atmosphere can 
be very different from an effect that is 
calculated by averaging a particular 
surface property such as temperature 
or moisture [1-3]—particularly in the 
mountains, where surface variability is 
typically very high.

Figure 2 shows an example of this—a 
highly complex mountain surface with 
bare rocks, debris-covered permafrost, 
patchy snow cover, sparse trees, and 
shallow and deep soils with varying 
vegetation. All of these surface features 
can occur within a single kilometer—a 
resolution that is typically not reached 
by weather forecast models of even the 
latest generation. Existing models of 
weather prediction and climate change 
still operate using a grid resolution, 
which is far too coarse (multiple kilome-
ters) to explicitly and correctly map the 
surface heterogeneity in the mountains 
(and elsewhere). This can lead to severe 
errors in understanding and prediction.

 In next-generation environmental 
science, data resolution will be addressed using densely deployed (typically wire-
less) sensor networks. Recent developments in wireless sensing have made it pos-
sible to instrument and sense the physical world with high resolution and fidelity 
over an extended period of time. Wireless connections enable reliable collection 
of data from remote sensors to send to laboratories for processing, analyzing, and 
archiving. Such high-resolution sensing enables scientists to understand more pre-
cisely the variability and dynamics of environmental parameters. Wireless sensing 
also provides scientists with safe and convenient visibility of in situ sensor deploy-

FIGURE 1.

A typical data source context for next-
generation environmental science, with a 
heterogeneous sensor deployment that in-
cludes (1) mobile stations, (2) high-resolution 
conventional weather stations, (3) full-size 
snow/weather stations, (4) external weather 
stations, (5) satellite imagery, (6) weather 
radar, (7) mobile weather radar, (8) stream 
observations, (9) citizen-supplied observa-
tions, (10) ground LIDAR, (11) aerial LIDAR, 
(12) nitrogen/methane measures, (13) snow 
hydrology and avalanche probes, (14) seismic 
probes, (15) distributed optical fiber tempera-
ture sensing, (16) water quality sampling, 
(17) stream gauging stations, (18) rapid mass 
movements research, (19) runoff stations, and 
(20) soil research.
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ments and allows them to enable, debug, and test the deployments from the labo-
ratory. This helps minimize site visits, which can be costly, time consuming, and 
even dangerous.

However, dense sensor deployments in harsh, remote environments remain 
challenging for several reasons. First, the whole process of sensing, computation, 
and communication must be extremely energy efficient so that sensors can remain 
operational for an extended period of time using small batteries, solar panels, or 
other environmental energy. Second, sensors and their communication links must 
be fairly robust to ensure reliable data acquisition in harsh outdoor environments. 
Third, invalid sensor data due to system failures or environmental impacts must be 
identified and treated accordingly (e.g., flagged or even filtered from the dataset). 
Although recent research (including the Swiss Experiment and Life Under Your 
Feet) partially addresses these issues, further research is needed to address them in 
many production systems.

FIGURE 2.

Terrestrial laser scan for snow distribution in the Swiss Alps show-
ing typical patchy snow cover.
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manaGinG anD expLorinG massive voLumes oF sensor Data

High-resolution environmental sensing introduces severe data management chal-
lenges for scientists. These include reliably archiving large volumes (many terabytes) 
of data, sharing such data with users within access control policies, and maintaining 
sufficient context and provenance of sensor data using correct metadata [4].

Environmental scientists can use commercial database tools to address many of 
the data management and exploratory challenges associated with such a massive 
influx of data. For example, Microsoft’s SenseWeb project [5] provides an infra-
structure, including an underlying Microsoft SQL Server database, for archiving 
massive amounts of sensor data that might be compressed and distributed over 
multiple computers. SenseWeb also maintains suitable data indexes and enables 
efficient query processing to help users quickly explore the dataset to find features 
for detailed analysis [5-7]. But even with these capabilities, SenseWeb hits just the 
tip of the iceberg of the challenging data management tasks facing environmental 
scientists. Additional tools are necessary to efficiently integrate sensor data with 
relevant context and provide data provenance. Querying such data in a unified 
framework remains challenging. More research is also needed to deal with uncer-
tain data that comes from noisy sensors and to handle the constant data flow from 
distributed locations.

To better understand environmental phenomena, scientists need to derive and 
apply various models to transform sensor data into scientific and other practical 
results. Database technology can help scientists to easily integrate observational 
data from diverse sources, possibly distributed over the Internet, with model assess-
ments and forecasts—a procedure known as data assimilation. Sophisticated data 
mining techniques can allow scientists to easily explore spatiotemporal patterns of 
data (both interactively as well as in batch on archived data). Modeling techniques 
can provide correct and timely prediction of phenomena such as flooding events, 
landslides, or avalanche cycles, which can be highly useful for intervention and 
damage prevention, even with just a few hours of lead time. This very short-term 
forecasting is called nowcasting in meteorology.

Scientists in the Swiss Experiment project1 have made progress in useful data as-
similation and nowcasting. One case study in this project applies advanced sensors 
and models to forecasting alpine natural hazards [8]. A refined nowcast relies on 
the operational weather forecast to define the target area of a potential storm that 

1 www.swiss-experiment.ch
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would affect a small-scale 
region (a few square kilo-
meters) in the mountains. 
The operational weather 
forecast should allow suf- 
ficient time to install lo-
cal mobile stations (such 
as SensorScope stations2) 
and remote sensing devic-
es at the target area and 
to set up high-resolution 
hazard models. In the long 
term, specialized weath- 
er forecast models will be 
developed to allow much more precise local simulation.

 To increase the public’s environmental awareness and to support decision and 
policy makers, useful findings from scientific experiments must be presented and 
disseminated in a practical fashion. For example, SenseWeb provides a Web-based 
front end called SensorMap3 that presents real-time and historical environmental 
factors in an easy-to-understand visual interface. It overlays spatial visualizations 
(such as icons showing current air pollution at a location or images showing distri-
bution of snowfalls) over a browsable geographic map, plays the visualizations of 
selected environmental datasets as a movie on top of a geographic map, and shows 
important trends in historic environmental data as well as useful summaries of 
real-time environmental data. (See Figure 3.) At present, such platforms support 
only a limited set of visualizations, and many challenges remain to be solved to sup-
port the more advanced visualizations required by diverse audiences.

worLDwiDe environmentaL monitorinG

We have described the next-generation environmental monitoring system as isolat-
ed—focused on a particular region of interest such as a mountain range, ice field, or 
forest. This is how such environmental systems are starting to be deployed. How-
ever, we foresee far more extensive monitoring systems that can allow scientists 
to share data with one another and combine and correlate data from millions of 

FIGURE 3.

SensorMap showing temperature distribution overlaid on 
3-D mountain terrain.

2 www.swiss-experiment.ch/index.php/SensorScope:Home
3 www.sensormap.org
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sensors all over the world to gain an even better understanding of global environ-
mental patterns.

Such a global-scale sensor deployment would introduce unprecedented benefits 
and challenges. As sensor datasets grow larger, traditional data management tech-
niques (such as loading data into a SQL database and then querying it) will clearly 
prove inadequate. To avoid moving massive amounts of data around, computations 
will need to be distributed and pushed as close to data sources as possible [7]. To 
reduce the storage and communication footprint, datasets will have to be com-
pressed without loss of fidelity. To support data analysis with reasonable latencies, 
computation should preferably be done over compressed data [9]. Scientific analy-
sis will also most likely require additional metadata, such as sensor specifications, 
experiment setups, data provenance, and other contextual information. Data from 
heterogeneous sources will have to be integrated in a unified data management and 
exploration framework [10].

Obviously, computer science tools can enable this next-generation environmen-
tal science only if they are actually used by domain scientists. To expedite adoption 
by domain scientists, such tools must be intuitive, easy to use, and robust. More-
over, they cannot be “one-size-fits-all” tools for all domains; rather, they should 
be domain-specific custom tools—or at least custom variants of generic tools. De-
veloping these tools will involve identifying the important problems that domain 
scientists are trying to answer, analyzing the design trade-offs, and focusing on 
important features. While such application engineering approaches are common 
for non-science applications, they tend not to be a priority in science applications. 
This must change. 

concLusion

The close collaboration between environmental science and computer science 
is providing a new and better way to conduct scientific research through high- 
resolution and high-fidelity data acquisition, simplified large-scale data man-
agement, powerful data modeling and mining, and effective data sharing and  
visualization. In this paper, we have outlined several challenges to realizing the  
vision of next-generation environmental science. Some significant progress has been 
made in this context—such as in the Swiss Experiment and SenseWeb, in which an  
advanced, integrated environmental data infrastructure is being used by a variety 
of large environmental research projects, for environmental education, and by in-
dividual scientists. Meanwhile, dramatic progress is being made in complementary 
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fields such as basic sensor technology. Our expectation is that all of these advanc-
es in instrumenting the Earth will help us realize the dreams of next-generation  
environmental science—allowing scientists, government, and the public to better  
understand and live safely in their environment.
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H E ALTH AN D WELLBE I N G

SImoN mErcEr |  Microsoft Research

Part 2 of this book explores the remarkable progress  
and challenges we are seeing in the most intimate and 
personal of our sciences, the one with the most immedi-
ate impact on all of us across the planet: the science of 

health and medicine. 
The first article sets the scene. Gillam et al. describe the prog-

ress of medical science over human history and make a strong 
case for a convergence of technologies that will change the face of 
healthcare within our lifetime. The remaining articles shed light 
on the convergent strands that make up this larger picture, by fo-
cusing on particular medical science challenges and the technolo-
gies being developed to overcome them.

Any assertion that the coming healthcare revolution will be 
universal is credible only if we can demonstrate how it can cross 
the economic and social divides of the modern world. Robertson et 
al. show that a combination of globally pervasive cell phone tech-
nology and the computational technique of Bayesian networks can 
enable collection of computerized healthcare records in regions 
where medical care is sparse and can also provide automated, ac-
curate diagnoses.

An understanding of the human brain is one of the grand chal-
lenges of medicine, and Lichtman et al. describe their approach to 
the generation of the vast datasets needed to understand this most 
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complex of structures. Even imaging the human brain at the subcellular level, 
with its estimated 160 trillion synaptic connections, is a challenge that will test 
the bounds of data storage, and that is merely the first step in deducing function 
from form.

An approach to the next stage of understanding how we think is presented by 
Horvitz and Kristan, who describe techniques for recording sequences of neuronal 
activity and correlating them with behavior in the simplest of organisms. This work 
will lead to a new generation of software tools, bringing techniques of machine 
learning/artificial intelligence to generate new insights into medical data.

While the sets of data that make up a personal medical record are orders of mag-
nitude smaller than those describing the architecture of the brain, current trends 
toward universal electronic healthcare records mean that a large proportion of the 
global population will soon have records of their health available in a digital form. 
This will constitute in aggregate a dataset of a size and complexity rivaling those of 
neuroscience. Here we find parallel challenges and opportunities. Buchan, Winn, 
and Bishop apply novel machine learning techniques to this vast body of healthcare 
data to automate the selection of therapies that have the most desirable outcome. 
Technologies such as these will be needed if we are to realize the world of the 
“Healthcare Singularity,” in which the collective experience of human healthcare 
is used to inform clinical best practice at the speed of computation.

While the coming era of computerized health records promises more accessible 
and more detailed medical data, the usability of this information will require the 
adoption of standard forms of encoding so that inferences can be made across data-
sets. Cardelli and Priami look toward a future in which medical data can be overlaid 
onto executable models that encode the underlying logic of biological systems—to 
not only depict the behavior of an organism but also predict its future condition or 
reaction to a stimulus. In the case of neuroscience, such models may help us under-
stand how we think; in the case of medical records, they may help us understand 
the mechanisms of disease and treatment. Although the computational modeling 
of biological phenomena is in its infancy, it provides perhaps the most intriguing 
insights into the emerging complementary and synergistic relationship between 
computational and living systems. 
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n 1499, when portuguese explorer vasco da gama returned 
home after completing the first-ever sea voyage from Europe 
to India, he had less than half of his original crew with him—
scurvy had claimed the lives of 100 of the 160 men. Through-

out the Age of Discovery,1 scurvy was the leading cause of death 
among sailors. Ship captains typically planned for the death of as 
many as half of their crew during long voyages. A dietary cause 
for scurvy was suspected, but no one had proved it. More than a 
century later, on a voyage from England to India in 1601, Captain 
James Lancaster placed the crew of one of his four ships on a regi-
men of three teaspoons of lemon juice a day. By the halfway point 
of the trip, almost 40% of the men (110 of 278) on three of the 
ships had died, while on the lemon-supplied ship, every man sur-
vived [1]. The British navy responded to this discovery by repeat-
ing the experiment—146 years later. 

In 1747, a British navy physician named James Lind treated sail-
ors suffering from scurvy using six randomized approaches and 
demonstrated that citrus reversed the symptoms. The British navy 
responded, 48 years later, by enacting new dietary guidelines re-
quiring citrus, which virtually eradicated scurvy from the British 
fleet overnight. The British Board of Trade adopted similar dietary 

1 15th to 17th centuries.
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practices for the merchant fleet in 1865, an additional 70 years later. The total time 
from Lancaster’s definitive demonstration of how to prevent scurvy to adoption 
across the British Empire was 264 years [2].

The translation of medical discovery to practice has thankfully improved sub-
stantially. But a 2003 report from the Institute of Medicine found that the lag be-
tween significant discovery and adoption into routine patient care still averages 
17 years [3, 4]. This delayed translation of knowledge to clinical care has negative 
effects on both the cost and the quality of patient care. A nationwide review of 439 
quality indicators found that only half of adults receive the care recommended by 
U.S. national standards [5]. 

The ImpacT of The InformaTIon explosIon In medIcIne

Despite the adoption rate of medical knowledge significantly improving, we face 
a new challenge due to the exponential increase in the rate of medical knowledge 
discovery. More than 18 million articles are currently catalogued in the biomedical 
literature, including over 800,000 added in 2008. The accession rate has doubled 
every 20 years, and the number of articles per year is expected to surpass 1 million 
in 2012, as shown in Figure 1. 

Translating all of this emerging medical knowledge into practice is a staggering 
challenge. Five hundred years ago, Leonardo da Vinci could be a painter, engineer, 
musician, and scientist. One hundred years ago, it is said that a physician might 
have reasonably expected to know everything in the field of medicine.2 Today, a 
typical primary care doctor must stay abreast of approximately 10,000 diseases and 
syndromes, 3,000 medications, and 1,100 laboratory tests [6]. Research librarians 
estimate that a physician in just one specialty, epidemiology, needs 21 hours of 
study per day just to stay current [7]. Faced with this flood of medical information, 
clinicians routinely fall behind, despite specialization and sub-specialization [8]. 

The sense of information overload in medicine has been present for surprisingly 
many years. An 1865 speech by Dr. Henry Noyes to the American Ophthalmologic 
Society is revealing. He said that “medical men strive manfully to keep up their 
knowledge of how the world of medicine moves on; but too often they are the first 
to accuse themselves of being unable to meet the duties of their daily calling.…” 
He went on to say, “The preparatory work in the study of medicine is so great, if 
adequately done, that but few can spare time for its thorough performance….” [9]

2 www.medinfo.cam.ac.uk/miu/papers/Hanka/THIM/default.htm
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could Knowledge adopTIon In healTh-
care Become nearly InsTanTaneous?

The speed at which definitive medi-
cal discoveries have broadly reached 
medical practice over the last two mil-
lennia has progressively increased, as 
shown in Figure 2 on the next page. 

Focusing on the last 150 years, in 
which the effects of industrialization 
and the information explosion have 
been most acute, the trajectory flat-
tens slightly but remains largely linear, 
as the figure shows. (An asymptotic fit 
yields an r2 of 0.73, whereas the linear 
fit is 0.83.) 

 Given that even the speed of light 
is finite, this trend will inevitably be  
asymptotic to the horizontal axis. Yet, 
if the linearity can be sufficiently 
maintained for a while, the next 20 
years could emerge as a special time 

for healthcare as the translation from medical knowledge discovery to widespread medi-
cal practice becomes nearly instantaneous.

The proximity of this trajectory to the axis occurs around the year 2025. In 
response to the dramatic computational progress observed with Moore’s Law and 
the growth in parallel and distributed computing architectures, Ray Kurzweil, in 
The Singularity Is Near, predicts that 2045 will be the year of the Singularity, when 
computers meet or exceed human computational ability and when their ability to 
recursively improve themselves can lead to an “intelligence explosion” that ulti-
mately affects all aspects of human culture and technology [10]. Mathematics de-
fines a “singularity” as a point at which an object changes its nature so as to attain 
properties that are no longer the expected norms for that class of object. Today, 
the dissemination path for medical information is complex and multi-faceted, in-
volving commercials, lectures, brochures, colleagues, and journals. In a world with 
nearly instantaneous knowledge translation, dissemination paths would become 
almost entirely digital and direct. 

Figure 1. 

The number of biomedical articles catalogued 
each year is increasing precipitously and is 
expected to surpass 1 million in 2012.
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Figure 2. 

While it took 2,300 years after the first report of angina for the condition to be commonly taught 
in medical curricula, modern discoveries are being disseminated at an increasingly rapid pace. 
Focusing on the last 150 years, the trend still appears to be linear, approaching the axis around 2025.
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While the ideas around a technological singularity remain controversial,3 the 
authors refer to this threshold moment, when medical knowledge becomes “liquid” 
and its flow from research to practice (“bench to bedside”) becomes frictionless 
and immediate, as the “Healthcare Singularity.”

The promIses of a posT–healThcare sIngularITy world

Rofecoxib (Vioxx) was approved as safe and effective by the U.S. Food and Drug 
Administration (FDA) on May 20, 1999. On September 30, 2004, Merck withdrew 
it from the market because of concerns about the drug’s potential cardiovascular 
side effects. The FDA estimates that in the 5 years that the drug was on the market, 
rofecoxib contributed to more than 27,000 heart attacks or sudden cardiac deaths 
and as many as 140,000 cases of heart disease [11]. Rofecoxib was one of the most 
widely used medications ever withdrawn; over 80 million people had taken the 
drug, which was generating US$2.5 billion a year in sales.4

Today, it is reasonable to expect that after an FDA announcement of a drug’s 
withdrawal from the market, patients will be informed and clinicians will imme-
diately prescribe alternatives. But current channels of dissemination delay that re-
sponse. In a post–Healthcare Singularity world, that expectation will be met. To 
enable instantaneous translation, journal articles will consist of not only words, but 
also bits. Text will commingle with code, and articles will be considered complete 
only if they include algorithms. 

With this knowledge automation, every new medication will flow through a cas-
cade of post-market studies that are independently created and studied by leading 
academics across the oceans (effectively “crowdsourcing” quality assurance). Sus-
picious observations will be flagged in real time, and when certainty is reached, 
unsafe medications will disappear from clinical prescription systems in a rippling 
wave across enterprises and clinics. The biomedical information explosion will at 
last be contained and harnessed.

Other scenarios of knowledge dissemination will be frictionless as well: medical 
residents can abandon the handbooks they have traditionally carried that list drugs 
of choice for diseases, opting instead for clinical systems that personalize health-
care and geographically regionalize treatments based on drug sensitivities that are 
drawn in real time from the local hospital microbiology lab and correlated with the 
patient’s genomic profile.

3 http://en.wikipedia.org/wiki/Technological_singularity
4 http://en.wikipedia.org/wiki/Rofecoxib
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Knowledge discovery will also be enhanced. Practitioners will have access to 
high-performance, highly accurate databases of patient records to promote preven-
tive medical care, discover successful treatment patterns [12, 13], and reduce medi-
cal errors. Clinicians will be able to generate cause-effect hypotheses, run virtual 
clinical trials to deliver personalized treatment plans, and simulate interventions 
that can prevent pandemics.

Looking farther ahead, the instantaneous flow of knowledge from research 
centers to the front lines of clinical care will speed the treatment and prevention 
of newly emerging diseases. The moment that research labs have identified the 
epitopes to target for a new disease outbreak, protein/DNA/RNA/lipid synthesizers 
placed in every big hospital around the world will receive instructions, remotely 
transmitted from a central authority, directing the on-site synthesis of vaccines or 
even directed antibody therapies for rapid administration to patients. 

progress Toward The healThcare sIngularITy 

Companies such as Microsoft and Google are building new technologies to enable 
data and knowledge liquidity. Microsoft HealthVault and Google Health are Inter-
net based, secure, and private “consumer data clouds” into which clinical patient 
data can be pushed from devices and other information systems. Importantly, once 
the data are in these “patient clouds,” they are owned by the patient. Patients them-
selves determine what data can be redistributed and to whom the data may be 
released. 

A February 2009 study by KLAS reviewed a new class of emerging data aggrega-
tion solutions for healthcare. These enterprise data aggregation solutions (“enter-
prise data clouds”) unify data from hundreds or thousands of disparate systems 
(such as MEDSEEK, Carefx, dbMotion, Medicity, and Microsoft Amalga).5 These 
platforms are beginning to serve as conduits for data to fill patient data clouds. A 
recent example is a link between New York-Presbyterian’s hospital-based Amalga 
aggregation system and its patients’ HealthVault service.6 Through these links, data 
can flow almost instantaneously from hospitals to patients.

The emergence of consumer data clouds creates new paths by which new medical 
knowledge can reach patients directly. On April 21, 2009, Mayo Clinic announced 
the launch of the Mayo Clinic Health Advisory, a privacy- and security-enhanced 

5 www.klasresearch.com/Klas/Site/News/PressReleases/2009/Aggregation.aspx
6 http://chilmarkresearch.com/2009/04/06/healthvault-ny-presbyterian-closing-the-loop-on-care
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online application that offers individualized health guidance and recommendations 
built with the clinical expertise of Mayo Clinic and using secure and private patient 
health data from Microsoft HealthVault.7 Importantly, new medical knowledge and 
recommendations can be computationally instantiated into the advisory and ap-
plied virtually instantaneously to patients worldwide.

New technology is bridging research labs and clinical practice. On April 28, 
2009, Microsoft announced the release of Amalga Life Sciences, an extension to 
the data-aggregation class of products for use by scientists and researchers. Through 
this release, Microsoft is offering scalable “data aggregation and liquidity” solutions 
that link three audiences: patients, providers, and researchers. Companies such as 
Microsoft are building the “pipeline” to allow data and knowledge to flow through 
a semantically interoperable network of patients, providers, and researchers. These 
types of connectivity efforts hold the promise of effectively instantaneous dissemi-
nation of medical knowledge throughout the healthcare system. The Healthcare 
Singularity could be the gateway event to a new Age of Semantic Medicine.

Instantaneous knowledge translation in medicine is not only immensely impor-
tant, highly desirable, valuable, and achievable in our lifetimes, but perhaps even 
inevitable. 
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H E ALTH AN D WELLBE I N G

Bringing intelligent healthcare informatics to bear 
on the dual problems of reducing healthcare costs and 
improving quality and outcomes is a challenge even in 
countries with a reasonably developed technology infra-

structure. Much of medical knowledge and information remains 
in paper form, and even where it is digitized, it often resides in 
disparate datasets and repositories and in diverse formats. Data 
sharing is uncommon and frequently hampered by the lack of 
foolproof de-identification for patient privacy. All of these issues  
impede opportunities for data mining and analysis that would en-
able better predictive and preventive medicine.

Developing countries face these same issues, along with the 
compounding effects of economic and geopolitical constraints, 
transportation and geographic barriers, a much more limited clin-
ical workforce, and infrastructural challenges to delivery. Simple, 
high-impact deliverable interventions such as universal childhood 
immunization and maternal childcare are hampered by poor 
monitoring and reporting systems. A recent Lancet article by 
Christopher Murray’s group concluded that “immunization cover-
age has improved more gradually and not to the level suggested by 
countries’ official reports of WHO and UNICEF estimates. There 
is an urgent need for independent and contestable monitoring 
of health indicators in an era of global initiatives that are target- 
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oriented and disburse funds based on 
performance.” [1] 

Additionally, the most recent report  
on the United Nations Millennium De-
velopment Goals notes that “pneumo-
nia kills more children than any other 
disease, yet in developing countries, the 
proportion of children under five with 
suspected pneumonia who are taken to 
appropriate health-care providers re-
mains low.” [2] Providing reliable data 
gathering and diagnostic decision sup-
port at the point of need by the best-
trained individual available for care is 
the goal of public health efforts, but tools 

to accomplish this have been expensive, unsupportable, and inaccessible.
Below, we elaborate on the challenges facing healthcare delivery in develop-

ing countries and describe computer- and cell phone–based technology we have 
created to help address these challenges. At the core of this technology is the  
NxOpinion Knowledge Manager1 (NxKM), which has been under development at 
the Robertson Research Institute since 2002. This health platform includes a medi-
cal knowledge base assembled from the expertise of a large team of experts in the 
U.S. and developing countries, a diagnostic engine based on Bayesian networks, 
and cell phones for end-user interaction.

scale up, scale ouT, and scale In

One of the biggest barriers to deployment of a decision support or electronic health 
record system is the ability to scale. The term “scale up” refers to a system’s ability 
to support a large user base—typically hundreds of thousands or millions. Most 
systems are evaluated within a narrower scope of users. “Scale out” refers to a sys-
tem’s ability to work in multiple countries and regions as well as the ability to work 
across disease types. Many systems work only for one particular disease and are not 
easily regionalized—for example, for local languages, regulations, and processes. 
“Scale in” refers to the ability of a system to capture and benchmark against a single 

1 www.nxopinion.com/product/knowledgemng 

The NxOpinion health platform being used by  
Indian health extension workers.
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individual. Most systems assume a generic patient and fail to capture unique char-
acteristics that can be effective in individualized treatment.

With respect to scaling up, NxKM has been tested in India, Congo, Dominican 
Republic, Ghana, and Iraq. It has also been tested in an under-served inner-city com-
munity in the United States. In consultation with experts in database scaling, the 
architecture has been designed to combine multiple individual databases with a cen-
tral de-identified database, thus allowing, in principle, unlimited scaling options.

As for scaling out to work across many disease types and scaling in to provide 
accurate individual diagnoses, the amount of knowledge required is huge. For ex-
ample, INTERNIST-1, an expert system for diagnosis in internal medicine, con-
tains approximately 250,000 relationships among roughly 600 diseases and 4,000 
findings [3]. Building on the earlier work of one of us (Heckerman), who devel-
oped efficient methods for assessing and representing expert medical knowledge 
via a Bayesian network [4], we have brought together medical literature, textbook  
information, and expert panel recommendations to construct a growing knowledge 
base for NxKM, currently including over 1,000 diseases and over 6,000 discrete 
findings. The system also scales in by allowing very fine-grained data capture. Each 
finding within an individual health record or diagnostic case can be tracked and 
monitored. This level of granularity allows for tremendous flexibility in determining 
factors relating to outcome and diagnostic accuracy.

With regard to scaling out across a region, a challenge common to developing 
countries is the exceptionally diverse and region-specific nature of medical condi-
tions. For example, a disease that is common in one country or region might be rare 
in another. Whereas rule-based expert systems must be completely reengineered in 
each region, the modular nature of the NxKM knowledge base, which is based on 
probabilistic similarity networks [4], allows for rapid customization to each region. 
The current incarnation of NxKM uses region-specific prevalence from expert esti-
mates. It can also update prevalence in each region as it is used in the field. NxKM 
also incorporates a modular system that facilitates customization to terms, treat-
ments, and language specific to each region. When region-specific information is 
unknown or unavailable, a default module is used until such data can be collected 
or identified.

dIagnosTIc accuracy and effIcIency

Studies indicate that even highly trained physicians overestimate their diagnos-
tic accuracy. The Institute of Medicine recently estimated that 44,000 to 98,000  
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preventable deaths occur each year due to medical error, many due to misdiag-
nosis [5]. In developing countries, the combined challenges of misdiagnoses  
and missing data not only reduce the quality of medical care for individuals but 
lead to missed outbreak recognition and flawed population health assessment  
and planning.

Again, building on the diagnostic methodology from probabilistic similarity  
networks [4], NxKM employs a Bayesian reasoning engine that yields accurate di-
agnoses. An important component of the system that leads to improved accuracy is 
the ability to ask the user additional questions that are likely to narrow the range 
of possible diagnoses. NxKM has the ability to ask the user for additional findings 
based on value-of-information computations (such as a cost function) [4]. Also im-
portant for clinical use is the ability to identify the confidence in the diagnosis (i.e., 
the probability of the most likely diagnosis). This determination is especially useful 
for less-expert users of the system, which is important for improving and supervis-
ing the care delivered by health extension workers (HEWs) in developing regions 
where deep medical knowledge is rare.

geTTIng healThcare To where IT Is needed: The lasT mIle

Another key challenge is getting diagnostics to where they are most needed. Be-
cause of their prevalence in developing countries, cell phones are a natural choice 
for a delivery vehicle. Indeed, it is believed that, in many such areas, access to cell 
phones is better than access to clean water. For example, according to the market 
database Wireless Intelligence,2 80 percent of the world’s population was within 
range of a cellular network in 2008. And figures from the International Telecom-
munication Union3 show that by the end of 2006, 68 percent of the world’s mobile 
subscriptions were in developing countries. More recent data from the Interna-
tional Telecommunications Union shows that between 2002 and 2007, cellular 
subscription was the most rapid growth area for telecommunication in the world, 
and that the per capita increase was greatest in the developing world.4

Consequently, we have developed a system wherein cell phones are used to  
access a centrally placed NxKM knowledge base and diagnostic engine implement-
ed on a PC. We are now testing the use of this system with HEWs in rural India. In 
addition to providing recommendations for medical care to the HEWs, the phone/

2 www.wirelessintelligence.com
3 www.itu.int
4 www.itu.int/ITU-D/ict/papers/2009/7.1%20teltscher_IDI%20India%202009.pdf
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central-PC solution can be used to create portable personal health records. One of 
our partner organizations, School Health Annual Report Programme (SHARP), 
will use it to screen more than 10 million Indian schoolchildren in 2009, creating 
a unique virtual personal health record for each child. 

Another advantage of this approach is that the data collected by this system 
can be used to improve the NxKM knowledge base. For example, as mentioned 
above, information about region-specific disease prevalence is important for ac-
curate medical diagnosis. Especially important is time-critical information about 
the outbreak of a disease in a particular location. As the clinical application is 
used, validated disease cases, including those corresponding to a new outbreak, are  
immediately available to NxKM. In addition, individual diagnoses can be moni-
tored centrally. If the uploaded findings of an individual patient are found to yield a 
low-confidence diagnosis, the patient can be identified for follow-up.

The user InTerface

A challenge with cellular technology is the highly constrained user interface and 
the difficulty of entering data using a relatively small screen and keypad. Our  
system simplifies the process in a number of ways. First, findings that are com-
mon for a single location (e.g., facts about a given village) are prepopulated into the 
system. Also, as mentioned above, the system is capable of generating questions—
specifically, simple multiple-choice questions—after only basic information such as 
the chief complaint has been entered. In addition, questions can be tailored to the  
organization, location, or skill level of the HEW user.

It is also important that the user interface be independent of the specific device 
hardware because users often switch between phones of different designs. Our in-
terface application sits on top of a middle-layer platform that we have implemented 
for multiple devices. 

In addition to simple input, the interface allows easy access to important bits of 
information. For example, it provides a daily summary of patients needing care, 
including their diagnosis, village location, and previous caregivers. 

daTa-sharIng soluTIons

Even beyond traditional legacy data silos (such as EPIC and CERNER) [5], bar-
riers to sharing critical public health data still exist—including concerns about  
privacy and sovereignty. Data availability can also be limited regionally (e.g., in  
India and South Africa), by organizations (e.g., the World Health Organization,  
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NxOpinion’s innovative approach, which shows data when you want it, how you want 
it, and where you want it, using artificial intelligence.
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World Vision, or pharmaceutical companies), or by providers (e.g., insurance com-
panies and medical provider groups). Significant public health value resides in each 
of these datasets, and efforts should be made to overcome the barriers to gathering 
data into shared, de-identified global databases. Such public datasets, while useful 
on their own, also add significant value to proprietary datasets, providing valuable 
generic context to proprietary information.

NxKM imports, manages, and exports data via publish sets. These processes  
allow various interest groups (governments, public health organizations, primary 
care providers, small hospitals, laboratory and specialty services, and insurance 
providers) to share the same interactive de-identified (privacy-preserving) global 
database while maintaining control of proprietary and protected data.

looKIng forward

Several challenges remain. While better educated HEWs are able to use these 
data collection and diagnostic decision support tools readily, other HEWs, such as  
Accredited Social Health Activists (ASHAs) and other front-line village workers, 
are often illiterate or speak only a local dialect. We are exploring two potential 
solutions—one that uses voice recognition technology and another that allows 
a user to answer multiple-choice questions via the cell phone’s numeric keypad. 
Voice recognition technology provides added flexibility in input, but—at least so 
far—it requires the voice recognizer to be trained by each user.

Another challenge is unique and reproducible patient identification—verifi-
cation that the subject receiving treatment is actually the correct patient—when 
there is no standard identification system for most under-served populations. Voice  
recognition combined with face recognition and newer methods of biometrics, 
along with a corroborating GPS location, can help ensure that the patient who 
needs the care is the one actually receiving treatment.

Another barrier is data integrity. For example, most rural individuals will re-
port diagnoses that have not been substantiated by qualified medical personnel and 
could be erroneous. We have attempted to mitigate this issue by using an inference 
engine that allows for down-weighting of unsubstantiated evidence.

Deploying systems that work anywhere in the world can lead to the creation 
of a massive amount of patient information. Storing, reconciling, and then ac-
cessing that information in the field, all while maintaining appropriate privacy 
and security, are exceptionally challenging when patient numbers are in the mil-
lions (instead of tens of thousands, as with most current electronic health record  
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systems). Further, feeding verified data on this scale back into the system to im-
prove its predictive capability while maintaining the ability to analyze and retrieve 
specific segments (data mine) remains difficult. 

A final, and perhaps the greatest, obstacle is that of cooperation. If organiza-
tions, governments, and companies are willing to share a de-identified global data-
base while protecting and owning their own database, medical science and health-
care can benefit tremendously. A unified database that allows integration across 
many monitoring and evaluation systems and databases should help in quickly and 
efficiently identifying drug resistance or outbreaks of disease and in monitoring 
the effectiveness of treatments and healthcare interventions. The global database 
should support data queries that guard against the identification of individuals and 
yet provide sufficient information for statistical analyses and validation. Such tech-
nology is beginning to emerge (e.g., [6]), but the daunting challenge of finding a 
system of rewards that encourages such cooperation remains.

summary

We have developed and are beginning to deploy a system for the acquisition, analy-
sis, and transmission of medical knowledge and data in developing countries. The 
system includes a centralized component based on PC technology that houses med-
ical knowledge and data and has real-time diagnostic capabilities, complemented 
by a cell phone–based interface for medical workers in the field. We believe that 
such a system will lead to improved medical care in developing countries through 
improved diagnoses, the collection of more accurate and timely data across more 
individuals, and the improved dissemination of accurate and timely medical knowl-
edge and information. 

When we stop and think about how a world of connected personal health rec-
ords can be used to improve medicine, we can see that the potential impact is stag-
gering. By knowing virtually every individual who exists, the diseases affecting that 
person, and where he or she is located; by improving data integrity; and by collect-
ing the data in a central location, we can revolutionize medicine and perhaps even 
eradicate more diseases. This global system can monitor the effects of various hu-
manitarian efforts and thereby justify and tailor efforts, medications, and resources 
to specific areas. It is our hope that a system that can offer high-quality diagnoses as 
well as collect and rapidly disseminate valid data will save millions of lives. Alerts 
and responses can become virtually instantaneous and can thus lead to the identi-
fication of drug resistance, outbreaks, and effective treatments in a fraction of the 
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time it takes now. The potential for empowering caregivers in developing countries 
though a global diagnostic and database system is enormous.
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he brain, the seat of our cognitive abilities, is perhaps 
the most complex puzzle in all of biology. Every second 
in the human brain, billions of cortical nerve cells trans-
mit billions of messages and perform extraordinarily 

complex computations. How the brain works—how its function 
follows from its structure—remains a mystery.

The brain’s vast numbers of nerve cells are interconnected at 
synapses in circuits of unimaginable complexity. It is largely as-
sumed that the specificity of these interconnections underlies our 
ability to perceive and classify objects, our behaviors both learned 
(such as playing the piano) and intrinsic (such as walking), and 
our memories—not to mention controlling lower-level functions 
such as maintaining posture and even breathing. At the highest 
level, our emotions, our sense of self, our very consciousness are 
entirely the result of activities in the nervous system.

At a macro level, human brains have been mapped into re-
gions that can be roughly associated with specific types of activi-
ties. However, even this building-block approach is fraught with 
complexity because often many parts of the brain participate in 
completing a task. This complexity arises especially because most 
behaviors begin with sensory input and are followed by analysis, 
decision making, and finally a motor output or action. 

At the microscopic level, the brain comprises billions of neu-

Discovering the Wiring  
Diagram of the Brain
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rons, each connected to other neurons by up to several thousand synaptic connec-
tions. Although the existence of these synaptic circuits has been appreciated for 
over a century, we have no detailed circuit diagrams of the brains of humans or any 
other mammals. Indeed, neural circuit mapping has been attempted only once, and 
that was two decades ago on a small worm with only 300 nerve cells. The central 
stumbling block is the enormous technical difficulty associated with such mapping. 
Recent technological breakthroughs in imaging, computer science, and molecular 
biology, however, allow a reconsideration of this problem. But even if we had a wir-
ing diagram, we would need to know what messages the neurons in the circuit are 
passing—not unlike listening to the signals on a computer chip. This represents 
the second impediment to understanding: traditional physiological methods let us 
listen to only a tiny fraction of the nerves in the circuit.

To get a sense of the scale of the problem, consider the cerebral cortex of the 
human brain, which contains more than 160 trillion synaptic connections. These 
connections originate from billions of neurons. Each neuron receives synaptic con-
nections from hundreds or even thousands of different neurons, and each sends 
information via synapses to a similar number of target neurons. This enormous 
fan-in and fan-out can occur because each neuron is geometrically complicated, 
possessing many receptive processes (dendrites) and one highly branched outflow 
process (an axon) that can extend over relatively long distances.

One might hope to be able to reverse engineer the circuits in the brain. In other 
words, if we could only tease apart the individual neurons and see which one is 
connected to which and with what strength, we might at least begin to have the 
tools to decode the functioning of a particular circuit. The staggering numbers 
and complex cellular shapes are not the only daunting aspects of the problem. The 
circuits that connect nerve cells are nanoscopic in scale. The density of synapses in 
the cerebral cortex is approximately 300 million per cubic millimeter. 

Functional magnetic resonance imaging (fMRI) has provided glimpses into the 
macroscopic 3-D workings of the brain. However, the finest resolution of fMRI is 
approximately 1 cubic millimeter per voxel—the same cubic millimeter that can 
contain 300 million synapses. Thus there is a huge amount of circuitry in even the 
most finely resolved functional images of the human brain. Moreover, the size of 
these synapses falls below the diffraction-limited resolution of traditional optical 
imaging technologies. 

Circuit mapping could potentially be amenable to analysis based on color cod-
ing of neuronal processes [1] and/or the use of techniques that break through the  



7 7THE FOURTH PARADIGM

diffraction limit [2]. Presently, the gold standard for analyzing synaptic connections 
is to use electron microscopy (EM), whose nanometer (nm) resolution is more than 
sufficient to ascertain the finest details of neural connections. But to map circuits, 
one must overcome a technical hurdle: EM typically images very thin sections (tens 
of nanometers in thickness), so reconstructing a volume requires a “serial recon-
struction” whereby the image information from contiguous slices of the same vol-
ume is recomposed into a volumetric dataset. There are several ways to generate 
such volumetric data (see, for example, [3-5]), but all of these have the potential to 
generate astonishingly large digital image data libraries, as described next.

some numBers

If one were to reconstruct by EM all the synaptic circuitry in 1 cubic mm of brain 
(roughly what might fit on the head of a pin), one would need a set of serial images 
spanning a millimeter in depth. Unambiguously resolving all the axonal and den-
dritic branches would require sectioning at probably no more than 30 nm. Thus the 
1 mm depth would require 33,000 images. Each image should have at least 10 nm 
lateral resolution to discern all the vesicles (the source of the neurotransmitters) 
and synapse types. A square-millimeter image at 5 nm resolution is an image that 
has ~4 x1010 pixels, or 10 to 20 gigapixels. So the image data in 1 cubic mm will be 
in the range of 1 petabyte (250 ~ 1,000,000,000,000,000 bytes). The human brain 
contains nearly 1 million cubic mm of neural tissue.

some successes To daTe

Given this daunting task, one is tempted to give up and find a simpler problem. 
However, new technologies and techniques provide glimmers of hope. We are pur-
suing these with the ultimate goal of creating a “connectome”—a complete circuit 
diagram of the brain. This goal will require intensive and large-scale collaborations 
among biologists, engineers, and computer scientists. 

Three years ago, the Reid and Lichtman labs began working on ways to auto-
mate and accelerate large-scale serial-section EM. Focusing specifically on large 
cortical volumes at high resolution, the Reid group has concentrated on very high 
throughput as well as highly automated processes. So far, their work has been pub-
lished only in abstract form [3], but they are confident about soon having the first 
10 terabytes of volumetric data on fine-scale brain anatomy. Physiological experi-
ments can now show the function of virtually every neuron in a 300 μm cube. 
The new EM data has the resolution to show virtually every axon, dendrite, and 
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synapse—the physical connections that underlie neuronal function. 
The problem of separating and tracking the individual neurons within the vol-

ume remains. However, some successes have already been achieved using exotic 
means. Lichtman’s lab found a way to express various combinations of red, green, 
and blue fluorescent proteins in genetically engineered mice. These random com-
binations presently provide about 90 colors or combinations of colors [1]. With this 
approach, it is possible to track individual neurons as they branch to their eventual 
synaptic connections to other neurons or to the end-organs in muscle. The multi-
color labeled nerves (dubbed “brainbow”), shown in Figure 1, are reminiscent of 
the rainbow cables in computers and serve the same purpose: to disambiguate 
wires traveling over long distances. 

Because these colored labels are present in the living mouse, it is possible to 
track synaptic wiring changes by observing the same sites multiple times over min-
utes, days, or even months. 

Reid’s lab has been able to stain neurons of rat and cat visual cortices such that 
they “light up” when activated. By stimulating the cat with lines of different orien-
tations, they have literally been able to see which neurons are firing, depending on 
the specific visual stimulus. By comparing the organization of the rat’s visual cortex 
to that of the cat, they have found that while a rat’s neurons appear to be randomly 
organized based on the orientation of the visual stimulus, a cat’s neurons exhibit 
remarkable structure. (See Figure 2.)

Achieving the finest resolution using EM requires imaging very thin slices of 
neural tissue. One method begins with a block of tissue; after each imaging pass, a 

Figure 1. 

Brainbow images showing individual neurons fluorescing in different colors. By tracking the neu-
rons through stacks of slices, we can follow each neuron’s complex branching structure to create 
the treelike structures in the image on the right.
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thin slice is removed (and destroyed) from the block, and then the process is repeat-
ed. Researchers in the Lichtman group at Harvard have developed a new device—a 
sort of high-tech lathe that they are calling an Automatic Tape-Collecting Lathe 
Ultramicrotome (ATLUM)—that can allow efficient nanoscale imaging over large 
tissue volumes. (See Figure 3 on the next page.)

The ATLUM [3] automatically sections an embedded block of brain tissue into 
thousands of ultrathin sections and collects these on a long carbon-coated tape for 
later staining and imaging in a scanning electron microscope (SEM). Because the 
process is fully automated, volumes as large as tens of cubic millimeters—large 
enough to span entire multi-region neuronal circuits—can be quickly and reliably 
reduced to a tape of ultrathin sections. SEM images of these ATLUM-collected sec-
tions can attain lateral resolutions of 5 nm or better—sufficient to image individual 
synaptic vesicles and to identify and trace all circuit connectivity.

The thin slices are images of one small region at a time. Once a series of individu-
al images is obtained, these images must be stitched together into very large images 

Figure 2. 

Neurons in a visual cortex stained in vivo with a calcium-sensitive dye. Left: A 3-D reconstruction 
of thousands of neurons in a rat visual cortex, obtained from a stack of images (300 μm on a side). 
The neurons are color coded according to the orientation of the visual stimulus that most excited 
them. Center: A 2-D image of the plane of section from the left panel. Neurons that responded to 
different stimulus orientations (different colors) are arranged seemingly randomly in the cortex.  
Inset: Color coding of stimulus orientations. Right: By comparison, the cat visual cortex is 
extremely ordered. Neurons that responded preferentially to different stimulus orientations are 
segregated with extraordinary precision. This image represents a complete 3-D functional map  
of over 1,000 neurons in a 300x300x200 μm volume in the visual cortex [6, 7].
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and possibly stacked into volumes. At Microsoft Research, work has proceeded to 
stitch together and then interactively view images containing billions of pixels.1 

Once these gigapixel-size images are organized into a hierarchical pyramid, the HD 
View application can stream requested imagery over the Web for viewing.2 This al-
lows exploration of both large-scale and very fine-scale features. Figure 4 shows a 
walkthrough of the result.

Once the images are captured and stitched, multiple slices of a sample must be 
stacked to assemble them into a coherent volume. Perhaps the most difficult task 
at that point is extracting the individual strands of neurons. Work is under way at 
Harvard to provide interactive tools to aid in outlining individual “processes” and 
then tracking them slice to slice to pull out each dendritic and axonal fiber [8, 9]. 
(See Figure 5.) Synaptic interfaces are perhaps even harder to find automatically; 
however, advances in both user interfaces and computer vision give hope that the 
whole process can be made tractable.

Decoding the complete connectome of the human brain is one of the great 
challenges of the 21st century. Advances at both the biological level and technical 
level are certain to lead to new successes and discoveries, and they will hopefully 
help answer fundamental questions about how our brain performs the miracle of 
thought.

1 http://research.microsoft.com/en-us/um/redmond/groups/ivm/ICE
2 http://research.microsoft.com/en-us/um/redmond/groups/ivm/HDView

Figure 3. 

The Automatic Tape-Collecting 
Lathe Ultramicrotome (ATLUM), 
which can allow efficient  
nanoscale imaging over large 
tissue volumes.

Knife 
advances

This tissue ribbon is collected 
by a submerged conveyor belt

Tissue rotates

These synchronized motions produce 
a spiral cut through the tissue block, 
yielding a continuous ribbon of tissue 
in the knife’s water boat

Knife’s water
level adjusted via
this inlet tube
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Figure 5. 

NeuroTrace allows neuroscientists to interactively explore and segment neural processes in high-
resolution EM data.

Figure 4. 

HD View allows interactive exploration of this 2.5-gigapixel image. 
Left: A slice of neural tissue. The large gray feature in the center 
is a nucleus of a neuron. Center: A close-up of a capillary and my-
elinated axon. Right: Close-up myelin layers encircling the cross-
section of an axon. Bottom: A zoomed-in view showing tiny vesicles 
surrounding a synaptic connection between very fine structures.
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lthough great strides have been made in neurobiol-
ogy, we do not yet understand how the symphony of 
communication among neurons leads to rich, compe-
tent behaviors in animals. How do local interactions 

among neurons coalesce into the behavioral dynamics of nervous 
systems, giving animals their impressive abilities to sense, learn, 
decide, and act in the world? Many details remain cloaked in mys-
tery. We are excited about the promise of gaining new insights by 
applying computational methods, in particular machine learning 
and inference procedures, to generate explanatory models from 
data about the activities of populations of neurons. 

new Tools for neuroBIologIsTs

For most of the history of electrophysiology, neurobiologists have 
monitored the membrane properties of neurons of vertebrates and 
invertebrates by using glass micropipettes filled with a conduct-
ing solution. Mastering techniques that would impress the most 
expert of watchmakers, neuroscientists have fabricated glass elec-
trodes with tips that are often less than a micron in diameter, and 
they have employed special machinery to punch the tips into the 
cell bodies of single neurons—with the hope that the neurons will 
function as they normally do within larger assemblies. Such an ap-
proach has provided data about the membrane voltages and action 
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potentials of a single cell or just a handful of cells. 
However, the relationship between neurobiologists and data about nervous  

systems is changing. New recording machinery is making data available on the  
activity of large populations of neurons. Such data makes computational proce-
dures increasingly critical as experimental tools for unlocking new understanding 
about the connections, architecture, and overall machinery of nervous systems.

New opportunities for experimentation and modeling on a wider scale have be-
come available with the advent of fast optical imaging methods. With this approach, 
dyes and photomultipliers are used to track calcium levels and membrane potentials 
of neurons, with high spatial and temporal resolution. These high-fidelity optical re-
cordings allow neurobiologists to examine the simultaneous activity of populations 
of tens to thousands of neurons. In a relatively short time, data available about the 
activity of neurons has grown from a trickle of information gleaned via sampling of 
small numbers of neurons to large-scale observations of neuronal activity. 

Spatiotemporal datasets on the behaviors of populations of neurons pose tanta-
lizing inferential challenges and opportunities. The next wave of insights about the 
neurophysiological basis for cognition will likely come via the application of new 
kinds of computational lenses that direct an information-theoretic “optics” onto 
streams of spatiotemporal population data. 

We foresee that neurobiologists studying populations of neurons will one day 
rely on tools that serve as computational microscopes—systems that harness ma-
chine learning, reasoning, and visualization to help neuroscientists formulate and 
test hypotheses from data. Inferences derived from the spatiotemporal data stream-
ing from a preparation might even be overlaid on top of traditional optical views 
during experiments, augmenting those views with annotations that can help with 
the direction of the investigation. 

Intensive computational analyses will serve as the basis for modeling and vi-
sualization of the intrinsically high-dimensional population data, where multiple 
neuronal units interact and contribute to the activity of other neurons and as-
semblies, and where interactions are potentially context sensitive—circuits and 
flows might exist dynamically, transiently, and even simultaneously on the same 
neuronal substrate. 

compuTaTIon and complexITy

We see numerous opportunities ahead for harnessing fast-paced computations to 
assist neurobiologists with the science of making inferences from neuron popula-
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tion data. Statistical analyses have already been harnessed in studies of popula-
tions of neurons. For example, statistical methods have been used to identify and 
characterize neuronal activity as trajectories in large dynamical state spaces [1]. 
We are excited about employing richer machine learning and reasoning to induce 
explanatory models from case libraries of neuron population data. Computational 
procedures for induction can assist scientists with teasing insights from raw data 
on neuronal activity by searching over large sets of alternatives and weighing the 
plausibility of different explanatory models. The computational methods can be 
tasked with working at multiple levels of detail, extending upward from circuit-
centric exploration of local connectivity and functionality of neurons to potentially 
valuable higher-level abstractions of neuronal populations—abstractions that may 
provide us with simplifying representations of the workings of nervous systems. 

Beyond generating explanations from observations, inferential models can be 
harnessed to compute the expected value of information, helping neuroscientists to 
identify the best next test to perform or information to gather, in light of current 
goals and uncertainties. Computing the value of information can help to direct in-
terventional studies, such as guidance on stimulating specific units, clamping the 
voltage of particular cells, or performing selective modification of cellular activity 
via agonist and antagonist pharmacological agents. 

We believe that there is promise in both automated and interactive systems, 
including systems that are used in real-time settings as bench tools. Computational 
tools might one day even provide real-time guidance for probes and interventions 
via visualizations and recommendations that are dynamically generated during 
imaging studies. 

Moving beyond the study of specific animal systems, computational tools for an-
alyzing neuron population data will likely be valuable in studies of the construction 
of nervous systems during embryogenesis, as well as in comparing nervous systems 
of different species of animals. Such studies can reveal the changes in circuitry and 
function during development and via the pressures of evolutionary adaptation.

specTrum of sophIsTIcaTIon 

Neurobiologists study nervous systems of invertebrates and vertebrates across a 
spectrum of complexity. Human brains are composed of about 100 billion neurons 
that interact with one another via an estimated 100 trillion synapses. In contrast, 
the brain of the nematode, Caenorhabditis elegans (C. elegans), has just 302 neurons. 
Such invertebrate nervous systems offer us an opportunity to learn about the prin-
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ciples of neuronal systems, which can be generalized to more complex systems, 
including our own. For example, C. elegans has been a model system for research 
on the structure of neuronal circuits; great progress has been achieved in mapping 
the precise connections among its neurons.

Many neurobiologists choose to study simpler nervous systems even if they are 
motivated by questions about the neurobiological nature of human intelligence. 
Nervous systems are derived from a family tree of refinements and modifications, 
so it is likely that key aspects of neuronal information processing have been con-
served across brains of a range of complexities. While new abstractions, layers, and 
interactions may have evolved in more complex nervous systems, brains of different 
complexities likely rely on a similar neuronal fabric—and there is much that we do 
not know about that fabric. 

In work with our colleagues Ashish Kapoor, Erick Chastain, Johnson Apacible, 
Daniel Wagenaar, and Paxon Frady, we have been pursuing the use of machine 
learning, reasoning, and visualization to understand the machinery underlying de-
cision making in Hirudo, the European medicinal leech. We have been applying 
computational analyses to make inferences from optical data about the activity of 
populations of neurons within the segmental ganglia of Hirudo. The ganglia are 
composed of about 400 neurons, and optical imaging reveals the activity of approx-
imately 200 neurons at a time—all the neurons on one side of the ganglion. Several 
frames of the optical imaging of Hirudo are displayed in Figure 1. The brightness 

Figure 1. 

Imaging of a sequence of neurons of Hirudo  
in advance of its decision to swim or crawl. 
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of each of the imaged neurons represents the level of depolarization of the cells, 
which underlies the production of action potentials.

We are developing analyses and assembling tools in pursuit of our vision of devel-
oping computational microscopes for understanding the activity of neuronal popu-
lations and their relationship to behavior. In one approach, we generate graphical 
probabilistic temporal models that can predict the forthcoming behavior of Hirudo 
from a short window of analysis of population data. The models are generated by 
searching over large spaces of feasible models in which neurons, and abstractions 
of neurons, serve as random variables and in which temporal and atemporal de-
pendencies are inferred among the variables. The methods can reveal modules of 
neurons that appear to operate together and that can appear dynamically over the 
course of activity leading up to decisions by the animal. In complementary work, 
we are considering the role of neuronal states in defining trajectories through state 
spaces of a dynamical system. 

emergence of a compuTaTIonal mIcroscope

We have started to build interactive viewers and tools that allow scientists to ma-
nipulate inferential assumptions and parameters and to inspect implications vi-
sually. For example, sliders allow for smooth changes in thresholds for admitting 
connections among neurons and for probing strengths of relationships and mem-
bership in modules. We would love to see a world in which such tools are shared 
broadly among neuroscientists and are extended with learning, inference, and  
visualization components developed by the neuroscience community.

Figure 2 on the next page shows a screenshot of a prototype tool we call the 
MSR Computational Microscope, which was developed by Ashish Kapoor, Erick 
Chastain, and Eric Horvitz at Microsoft Research as part of a broader collabora-
tion with William Kristan at the University of California, San Diego, and Daniel  
Wagenaar at California Institute of Technology. The tool allows users to visualize 
neuronal activity over a period of time and then explore inferences about relation-
ships among neurons in an interactive manner. Users can select from a variety of 
inferential methods and specify modeling assumptions. They can also mark particu-
lar neurons and neuronal subsets as focal points of analyses. The view in Figure 2 
shows an analysis of the activity of neurons in the segmental ganglia of Hirudo. In-
ferred informational relationships among cells are displayed via highlighting of neu-
rons and through the generation of arcs among neurons. Such inferences can help to 
guide exploration and confirmation of physical connections among neurons. 
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Figure 2. 

Possible connections and 
clusters inferred from  

population data during 
imaging of Hirudo. 

Figure 3. 

Inferred informational  
relationships among  

neurons in a segmental  
ganglion of Hirudo.  

Measures of similarity  
of the dynamics of  

neuronal activity over  
time are displayed via  

arcs and clusters.
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Figure 3 shows another informational analysis that spatially clusters cells that 
behave in a similar manner in the ganglia of Hirudo over a set of trials. The analysis 
provides an early vision of how information-theoretic analyses might one day help 
neurobiologists to discover and probe interactions within and between neuronal 
subsystems. 

We are only at the start of this promising research direction, but we expect to 
see a blossoming of analyses, tools, and a broader sub-discipline that focuses on 
the neuroinformatics of populations of neurons. We believe that computational 
methods will lead us to effective representations and languages for understanding 
neuronal systems and that they will become essential tools for neurobiologists to 
gain insight into the myriad mysteries of sensing, learning, and decision making by 
nervous systems.
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T he quantity of available healthcare data is rising rap-
idly, far exceeding the capacity to deliver personal or pub-
lic health benefits from analyzing this data [1]. Three key 
elements of the rise are electronic health records (EHRs), 

biotechnologies, and scientific outputs. We discuss these in turn 
below, leading to our proposal for a unified modeling approach that 
can take full advantage of a data-intensive environment.

elecTronIc healTh records

Healthcare organizations around the world, in both low- and high-
resource settings, are deploying EHRs. At the community level, 
EHRs can be used to manage healthcare services, monitor the 
public’s health, and support research. Furthermore, the social ben-
efits of EHRs may be greater from such population-level uses than 
from individual care uses.

The use of standard terms and ontologies in EHRs is increas-
ing the structure of healthcare data, but clinical coding behavior 
introduces new potential biases. For example, the introduction of 
incentives for primary care professionals to tackle particular con-
ditions may lead to fluctuations in the amount of coding of new 
cases of those conditions [2]. On the other hand, the falling cost of 
devices for remote monitoring and near-patient testing is leading 
to more capture of objective measures in EHRs, which can provide 
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less biased signals but may create the illusion of an increase in disease prevalence 
simply due to more data becoming available. 

Some patients are beginning to access and supplement their own records or 
edit a parallel health record online [3]. The stewardship of future health records 
may indeed be more with individuals (patients/citizens/consumers) and communi-
ties (families/local populations etc.) than with healthcare organizations. In sum-
mary, the use of EHRs is producing more data-intensive healthcare environments 
in which substantially more data are captured and transferred digitally. Computa-
tional thinking and models of healthcare to apply to this wealth of data, however, 
have scarcely been developed.

BIoTechnologIes

Biotechnologies have fueled a boom in molecular medical research. Some tech-
niques, such as genome-wide analysis, produce large volumes of data without the 
sampling bias that a purposive selection of study factors might produce. Such data-
sets are thus more wide ranging and unselected than conventional experimental 
measurements. Important biases can still arise from artifacts in the biotechnical 
processing of samples and data, but these are likely to decrease as the technolo-
gies improve. A greater concern is the systematic error that lies outside the data 
landscape—for example, in a metabolomic analysis that is confounded by not con-
sidering the time of day or the elapsed time from the most recent meal to when the 
sample was taken. The integration of different scales of data, from molecular-level 
to population-level variables, and different levels of directness of measurement of 
factors is a grand challenge for data-intensive health science. When realistically 
complex multi-scale models are available, the next challenge will be to make them 
accessible to clinicians and patients, who together can evaluate the competing risks 
of different options for personalizing treatment.

scIenTIfIc ouTpuTs

The outputs of health science have been growing exponentially [4]. In 2009, a new 
paper is indexed in PubMed, the health science bibliographic system, on average 
every 2 minutes. The literature-review approach to managing health knowledge is 
therefore potentially overloaded. Furthermore, the translation of new knowledge 
into practice innovation is slow and inconsistent [5]. This adversely affects not only 
clinicians and patients who are making care decisions but also researchers who are 
reasoning about patterns and mechanisms. There is a need to combine the mining 
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of evidence bases with computational models for exploring the burgeoning data 
from healthcare and research.

Hypothesis-driven research and reductionist approaches to causality have served 
health science well in identifying the major independent determinants of health 
and the outcomes of individual healthcare interventions. (See Figure 1.) But they 
do not reflect the complexity of health. For example, clinical trials exclude as many 
as 80 percent of the situations in which a drug might be prescribed—for example, 
when a patient has multiple diseases and takes multiple medications [7]. Consider a 
newly licensed drug released for general prescription. Clinician X might prescribe 
the drug while clinician Y does not, which could give rise to natural experiments. 
In a fully developed data-intensive healthcare system in which the data from those 
experiments are captured in EHRs, clinical researchers could explore the outcomes 
of patients on the new drug compared with natural controls, and they could poten-
tially adjust for confounding and modifying factors. However, such adjustments 
might be extremely complex and beyond the capability of conventional models.

Figure 1. 

Conventional approaches based on statistical hypothesis testing artificially decompose the 
healthcare domain into numerous sub-problems. They thereby miss a significant opportunity for 
statistical “borrowing of strength.” Chronic obstructive pulmonary disease (COPD), cardiovascular 
disease (CVD), and lung cancer can be considered together as a “big three” [6].
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a unIfIed approach

We propose a unified modeling approach that can take full advantage of a data-
intensive environment without losing the realistic complexity of health. (See Fig-
ure 2.) Our approach relies on developments within the machine learning field over 
the past 10 years, which provide powerful new tools that are well suited to this 
challenge. Knowledge of outcomes, interventions, and confounding or modifying 
factors can all be captured and represented through the framework of probabilis-
tic graphical models in which the relevant variables, including observed data, are 
expressed as a graph [8]. Inferences on this graph can then be performed automati-
cally using a variety of algorithms based on local message passing, such as [9]. Com-
pared with classical approaches to machine learning, this new framework offers a 
deeper integration of domain knowledge, taken directly from experts or from the 
literature, with statistical learning. Furthermore, these automatic inference algo-
rithms can scale to datasets of hundreds of millions of records, and new tools such 

Figure 2. 

We propose a unified approach to healthcare modeling that exploits the growing statistical re-
sources of electronic health records in addition to the data collected for specific studies.
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as Infer.NET allow rapid development of solutions within this framework [10]. We 
illustrate the application of this approach with two scenarios.

In scenario 1, an epidemiologist is investigating the genetic and environmental 
factors that predispose some children to develop asthma. He runs a cohort study of 
1,000 children who have been followed for 10 years, with detailed environmental 
and physiological measures as well as data on over half a million of the 3 million 
genetic factors that might vary between individuals. The conventional epidemiol-
ogy approach might test predefined hypotheses using selected groups of genetic 
and other factors. A genome-wide scanning approach might also be taken to look 
for associations between individual genetic factors and simple definitions of health 
status (e.g., current wheeze vs. no current wheeze at age 5 years). Both of these 
approaches use relatively simple statistical models. An alternative machine learn-
ing approach might start with the epidemiologist constructing a graphical model 
of the problem space, consulting literature and colleagues to build a graph around 
the organizing principle—say, “peripheral airways obstruction.” This model better 
reflects the realistic complexity of asthma with a variety of classes of wheeze and 
other signs and symptoms, and it relates them to known mechanisms. Unsuper-
vised clustering methods are then used to explore how genetic, environmental, and 
other study factors influence the clustering into different groups of allergic sensi-
tization with respect to skin and blood test results and reports of wheezing. The 
epidemiologist can relate these patterns to biological pathways, thereby shaping 
hypotheses to be explored further.

In scenario 2, a clinical team is auditing the care outcomes for patients with 
chronic angina. Subtly different treatment plans of care are common, such as 
different levels of investigation and treatment in primary care before referral to 
specialist care. A typical clinical audit approach might debate the treatment plan, 
consult literature, examine simple summary statistics, generate some hypotheses, 
and perhaps test the hypotheses using simple regression models. An alternative ma-
chine learning approach might construct a graphical model of the assumed treat-
ment plan, via debate and reference to the literature, and compare this with discov-
ered network topologies in datasets reflecting patient outcomes. Plausible networks 
might then be used to simulate the potential effects of changes to clinical practice 
by running scenarios that change edge weights in the underlying graphs. Thus the 
families of associations in locally relevant data can be combined with evidence 
from the literature in a scenario-planning activity that involves clinical reasoning 
and machine learning.
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The fourTh paradIgm: healTh avaTars

Unified models clearly have the potential to influence personal health choices, clin-
ical practice, and public health. So is this a paradigm for the future?

The first paradigm of healthcare information might be considered to be the case 
history plus expert physician, formalized by Hippocrates more than 2,000 years 
ago and still an important part of clinical practice. In the second paradigm, a medi-
cal record is shared among a set of complementary clinicians, each focusing their 
specialized knowledge on the patient’s condition in turn. The third paradigm is  
evidence-based healthcare that links a network of health professionals with knowl-
edge and patient records in a timely manner. This third paradigm is still in the pro-
cess of being realized, particularly in regard to capturing the complexities of clini-
cal practice in a digital record and making some aspects of healthcare computable.

We anticipate a fourth paradigm of healthcare information, mirroring that of 
other disciplines, whereby an individual’s health data are aggregated from multiple 
sources and attached to a unified model of that person’s health. The sources can 
range from body area network sensors to clinical expert oversight and interpreta-
tion, with the individual playing a much greater part than at present in building and 
acting on his or her health information. Incorporating all of this data, the unified 
model will take on the role of a “health avatar”—the electronic representation of 
an individual’s health as directly measured or inferred by statistical models or clini-
cians. Clinicians interacting with a patient’s avatar can achieve a more integrated 
view of different specialist treatment plans than they do with care records alone. 

The avatar is not only a statistical tool to support diagnosis and treatment, but 
it is also a communication tool that links the patient and the patient’s elected net-
work of clinicians and other trusted caregivers—for what-if treatment discussions, 
for example. While initially acting as a fairly simple multi-system model, the health 
avatar could grow in depth and complexity to narrow the gap between avatar and 
reality. Such an avatar would not involve a molecular-level simulation of a human 
being (which we view as implausible) but would instead involve a unified statistical 
model that captures current clinical understanding as it applies to an individual 
patient.

This paradigm can be extended to communities, where multiple individual ava-
tars interact with a community avatar to provide a unified model of the community’s 
health. Such a community avatar could provide relevant and timely information for 
use in protecting and improving the health of those in the community. Scarce com-
munity resources could be matched more accurately to lifetime healthcare needs, 
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particularly in prevention and early intervention, to reduce the severity and/or du-
ration of illness and to better serve the community as a whole. Clinical, consumer, 
and public health services could interact more effectively, providing both social 
benefit and new opportunities for healthcare innovation and enterprise.

conclusIon

Data alone cannot lead to data-intensive healthcare. A substantial overhaul of meth-
odology is required to address the real complexity of health, ultimately leading to 
dramatically improved global public healthcare standards. We believe that machine 
learning, coupled with a general increase in computational thinking about health, 
can be instrumental. There is arguably a societal duty to develop computational 
frameworks for seeking signals in collections of health data if the potential benefit 
to humanity greatly outweighs the risk. We believe it does.
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n a recent paper, nobel laureate paul nurse calls for a bet-
ter understanding of living organisms through “both the  
development of the appropriate languages to describe infor-
mation processing in biological systems and the generation  

of more effective methods to translate biochemical descriptions 
into the functioning of the logic circuits that underpin biological 
phenomena.” [1]

The language that Nurse wishes to see is a formal language 
that can be automatically translated into machine executable 
code and that enables simulation and analysis techniques for 
proving properties of biological systems. Although there are 
many approaches to the formal modeling of living systems, only 
a few provide executable descriptions that highlight the mecha-
nistic steps that make a system move from one state to another 
[2]. Almost all the techniques related to mathematical modeling 
abstract from these individual steps to produce global behavior, 
usually averaged over time.

Computer science provides the key elements to describe mecha-
nistic steps: algorithms and programming languages [3]. Following 
the metaphor of molecules as processes introduced in [4], process 
calculi have been identified as a promising tool to model biological 
systems that are inherently complex, concurrent, and driven by 
the interactions of their subsystems.

Visualization in  
Process Algebra Models  

of Biological Systems
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Causality is a key difference between language-based modeling approaches and 
other techniques. In fact, causality in concurrent languages is strictly related to the 
notion of concurrency or independence of events, which makes causality substan-
tially different from temporal ordering. An activity A causes an activity B if A is a 
necessary condition for B to happen and A influences the activity of B—i.e., there is a 
flow of information from A to B. The second part of the condition defining causality 
makes clear the distinction between precedence (related only to temporal ordering) 
and causality (a subset of the temporal ordering in which the flow of information is 
also considered) [5]. As a consequence, the list of the reactions performed by a sys-
tem does not provide causal information but only temporal information. It is there-
fore mandatory to devise new modeling and analysis tools to address causality.

Causality is a key issue in the analysis of complex interacting systems because it 
helps in dissecting independent components and simplifying models while also al-
lowing us to clearly identify cross-talks between different signaling cascades. Once 
the experimentalist observes an interesting event in a simulation, it is possible to 
compact the previous history of the system, exposing only the preceding events 
that caused the interesting one. This can give precise hints about the causes of a 
disease, the interaction of a drug with a living system (identifying its efficacy and 
its side effects), and the regulatory mechanisms of oscillating behaviors.

Causality is a relationship between events, and as such it is most naturally stud-
ied within discrete models, which are in turn described via algorithmic model-
ing languages. Although many modeling languages have been defined in computer 
science to model concurrent systems, many challenges remain to building algo-
rithmic models for the system-level understanding of biological processes. These 
challenges include the relationship between low-level local interactions and emer-
gent high-level global behavior; the incomplete knowledge of the systems under 
investigation; the multi-level and multi-scale representations in time, space, and 
size; and the causal relations between interactions and the context awareness of 
the inner components. Therefore, the modeling formalisms that are candidates to 
propel algorithmic systems biology should be complementary to and interoperable 
with mathematical modeling. They should address parallelism and complexity, be 
algorithmic and quantitative, express causality, and be interaction driven, compos-
able, scalable, and modular.

language vIsualIzaTIon

A fundamental issue in the adoption of formal languages in biology is their  
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usability. A modeling language must be understandable by biologists so they can 
relate it to their own informal models and to experiments. 

One attempt by biologists to connect formal languages and informal descrip-
tions of systems involved the use of a constrained natural language organized in the 
form of tables that collect all the information related to the structure and dynamic 
of a system. This narrative representation is informative and structured enough to 
be compiled into formal description that is amenable to simulation and analysis  
[6, 7]. Although the narrative modeling style is not yet visual, it is certainly more 
readable and corresponds better to the intuition of biologists than a formal (pro-
gramming) language. 

The best way to make a language understandable to scientists while also helping 
to manage complexity is to visualize the language. This is harder than visualizing 
data or visualizing the results of simulations because a language implicitly describes 
the full kinetics of a system, including the dynamic relationships between events. 
Therefore, language visualization must be dynamic, and possibly reactive [8], which 
means that a scientist should be able to detect and insert events in a running simula-
tion by direct intervention. This requires a one-to-one correspondence between the 
internal execution of a formal language and its visualization so that the kinetics of  
the language can be fully reflected in the kinetics of the visualization and vice versa.

This ability to fully match the kinetics of a general (Turing-complete) model-
ing language to visual representations has been demonstrated, for example, for pi- 
calculus [9], but many practical challenges remain to adapting such general meth-
ods to specific visualization requirements. (See Figure 1 on the next page.) One 
such requirement, for example, is the visualization and tracking of molecular com-
plexes; to this end, the BlenX language [10] and its support tools permit explicit rep-
resentation of complexes of biological elements and examination of their evolution 
in time [11]. (See Figure 2 on page 103.) The graphical representation of complexes 
is also useful in studying morphogenesis processes to unravel the mechanistic steps 
of pattern formation. (See Figure 3 on page 104.)

analysIs

Model construction is one step in the scientific cycle, and appropriate modeling 
languages (along with their execution and visualization capabilities) are important, 
particularly for modeling complex systems. Ultimately, however, one will want to 
analyze the model using a large number of techniques. Some of these techniques 
may be centered on the underlying mathematical framework, such as the analysis of 
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differential equations, Markov chains, 
or Petri nets generated from the mod-
el. Other techniques may be centered 
on the model description (the lan-
guage in which the model is written). 
For example, we may want to know 
whether two different model descrip-
tions actually represent the same be-
havior, by some measure of behavior 
equivalence. This kind of model cor-
respondence can arise, for example, 
from apparently different biological 
systems that work by the same funda-
mental principles. A similar question 
is whether we can simplify (abstract) 
a model description and still preserve 
its behavior, again by some measure of 
behavior equivalence that may mask 
some unimportant detail. 

Behavioral equivalences are in fact 
a primary tool in computer science 
for verifying computing systems. For 
instance, we can use equivalences to 
ensure that an implementation is in 
agreement with a specification, ab-
stracting as much as possible from 
syntactic descriptions and instead fo-
cusing on the semantics (dynamic) of 
specifications and implementations. 
So far, biology has focused on syntac-

tic relationships between genes, genomes, and proteins. An entirely new avenue 
of research is the investigation of the semantic equivalences of biological entities 
populating complex networks of interactions. This approach could lead to new vi-
sions of systems and reinforce the need for computer science to enhance systems 
biology.

Biology is a data-intensive science. Biological systems are huge collections of in-
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Figure 1. 

This diagram can be placed in 1:1 correspon-
dence with formal stochastic pi-calculus 
models [9, 12, 13] so that one can edit either the 
diagrams or the models. The nodes represent 
molecular states (the node icons are just for  
illustration), and the labeled arcs represent  
interactions with other molecules in the envi-
ronment. The models use a biochemical variant 
of pi-calculus with rate weight as superscripts 
and with +/- for binding and unbinding.
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teracting components. The last decade of research has contributed to identifying and 
classifying those components, especially at the molecular level (gene, metabolites, 
proteins). To make sense of the large amount of data available, we need to implicitly 
represent them in compact and executable models so that executions can recover the 
available data as needed. This approach would merge syntax and semantics in unify-
ing representations and would create the need for different ways of storing, retrieving, 
and comparing data. A model repository that represents the dynamics of biological 
processes in a compact and mechanistic manner would therefore be extremely valu-
able and could heighten the understanding of biological data and the basic biological 
principles governing life. This would facilitate predictions and the optimal design of 
further experiments to move from data collection to knowledge production. 

Figure 2. 

The green S boxes in the diagram represent entities populating the biological system under con-
sideration. The light blue rectangles attached to the green boxes represent the active interfaces/
domains available for complexation and decomplexation. The diagram shows how the simulation 
of the BlenX specification formed a ring complex and provides the position and the connections 
between boxes for inspection.
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analysIs vIsualIzaTIon

Executable models need visualization to make their execution interactive (to dy-
namically focus on specific features) and reactive (to influence their execution on 
the fly). Execution is one form of analysis; other analysis methods will need vi-
sualization as well. For complex systems, the normal method of “batch” analysis, 
consisting of running a complex analysis on the model and then mining the output 
for clues, needs to be replaced with a more interactive, explorative approach.

Model abstraction is an important tool for managing complexity, and we can en-
vision performing this activity interactively—for example, by lumping components 
together or by hiding components. The notion of lumping will then need an appro-
priate visualization and an appropriate way of relating the behavior of the original 
components to the behavior of the lumped components. This doesn’t mean visual-
izing the modeling language, but rather visualizing an abstraction function between 

Figure 3. 

The green, red, and blue S boxes in the diagram represent different species populating the biologi-
cal system under consideration. The light blue rectangles attached to the boxes represent the active 
interfaces/domains available for complexation and decomplexation. The diagram elucidates how 
patterns are formed in morphogenesis processes simulated by BlenX specifications.



1 0 5THE FOURTH PARADIGM

models. We therefore suggest visualizing the execution of programs/models in such 
a way that the output is linked to the source code/model specification and the graph-
ical abstraction performed by the end user is transformed into a formal program/
model transformation. The supporting tool would then check which properties the 
transformation is preserving or not preserving and warn the user accordingly.

All the above reinforces the need for a formal and executable language to model 
biology as the core feature of an in silico laboratory for biologists that could be the 
next-generation high-throughput tool for biology.
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arning! The articles in Part 3 of this book use a 
range of dramatic metaphors, such as “explosion,” 
“tsunami,” and even the “big bang,” to strikingly 
illustrate how scientific research will be trans-

formed by the ongoing creation and availability of high volumes 
of scientific data. Although the imagery may vary, these authors 
share a common intent by addressing how we must adjust our  
approach to computational science to handle this new prolifera-
tion of data. Their choice of words is motivated by the opportunity 
for research breakthroughs afforded by these large and rich data-
sets, but it also implies the magnitude of our culture’s loss if our 
research infrastructure is not up to the task. 

Abbott’s perspective across all of scientific research challenges 
us with a fundamental question: whether, in light of the prolif-
eration of data and its increasing availability, the need for sharing 
and collaboration, and the changing role of computational science, 
there should be a “new path for science.” He takes a pragmatic 
view of how the scientific community will evolve, and he is skepti-
cal about just how eager researchers will be to embrace techniques 
such as ontologies and other semantic technologies. While avoid-
ing dire portents, Abbott is nonetheless vivid in characterizing a 
disconnect between the supply of scientific knowledge and the  
demands of the private and government sectors.

W
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To bring the issues into focus, Southan and Cameron explore the “tsunami” of 
data growing in the EMBL-Bank database—a nucleotide sequencing information 
service. Throughout Part 3 of this book, the field of genetic sequencing serves as a 
reasonable proxy for a number of scientific domains in which the rate of data pro-
duction is brisk (in this case, a 200% increase per annum), leading to major chal-
lenges in data aggregation, workflow, backup, archiving, quality, and retention, to 
name just a few areas.

Larus and Gannon inject optimism by noting that the data volumes are trac-
table through the application of multicore technologies—provided, of course, that 
we can devise the programming models and abstractions to make this technical  
innovation effective in general-purpose scientific research applications.

Next, we revisit the metaphor of a calamity induced by a data tidal wave as  
Gannon and Reed discuss how parallelism and the cloud can help with scalability 
issues for certain classes of computational problems. 

From there, we move to the role of computational workflow tools in helping to 
orchestrate key tasks in managing the data deluge. Goble and De Roure identify 
the benefits and issues associated with applying computational workflow to scien-
tific research and collaboration. Ultimately, they argue that workflows illustrate  
primacy of method as a crucial technology in data-centric research.

Fox and Hendler see “semantic eScience” as vital in helping to interpret interrela-
tionships of complex concepts, terms, and data. After explaining the potential bene-
fits of semantic tools in data-centric research, they explore some of the challenges to 
their smooth adoption. They note the inadequate participation of the scientific com-
munity in developing requirements as well as a lack of coherent discussion about the 
applicability of Web-based semantic technologies to the scientific process. 

Next, Hansen et al. provide a lucid description of the hurdles to visualizing large 
and complex datasets. They wrestle with the familiar topics of workflow, scalabil-
ity, application performance, provenance, and user interactions, but from a visual-
ization standpoint. They highlight that current analysis and visualization methods 
lag far behind our ability to create data, and they conclude that multidisciplinary 
skills are needed to handle diverse issues such as automatic data interpretation, 
uncertainty, summary visualizations, verification, and validation.

Completing our journey through these perils and opportunities, Parastatidis 
considers how we can realize a comprehensive knowledge-based research infra-
structure for science. He envisions this happening through a confluence of tradi-
tional scientific computing tools, Web-based tools, and select semantic methods.
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A New Path for Science?

he scientific challenges of the 21st century will strain 
the partnerships between government, industry, and 
academia that have developed and matured over the last 
century or so. For example, in the United States, begin-

ning with the establishment of the National Science Foundation 
in 1950, the nation’s research university system has blossomed and 
now dominates the basic research segment. (The applied research 
segment, which is far larger, is primarily funded and implemented 
within the private sector.) 

One cannot overstate the successes of this system, but it has 
come to be largely organized around individual science disciplines 
and rewards individual scientists’ efforts through publications and 
the promotion and tenure process. Moreover, the eternal “restless-
ness” of the system means that researchers are constantly seeking 
new ideas and new funding [1, 2]. An unexpected outcome of this 
system is the growing disconnect between the supply of scientific 
knowledge and the demand for that knowledge from the private 
and government sectors [3, 4]. The internal reward structure at 
universities, as well as the peer review system, favors research 
projects that are of inherent interest to the scientific community 
but not necessarily to those outside the academic community.
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New Drivers

It is time to reexamine the basic structures underlying our research enterprise. For 
example, given the emerging and urgent need for new approaches to climate and 
energy research in the broad context of sustainability, fundamental research on the 
global climate system will continue to be necessary, but businesses and policymak-
ers are asking questions that are far more interdisciplinary than in the past. This 
new approach is more akin to scenario development in support of risk assessment 
and management than traditional problem solving and the pursuit of knowledge 
for its own sake. 

In climate science, the demand side is focused on feedback between climate 
change and socioeconomic processes, rare (but high-impact) events, and the de- 
velopment of adaptive policies and management protocols. The science supply side 
favors studies of the physical and biological aspects of the climate system on a con-
tinental or global scale and reducing uncertainties (e.g., [5]). This misalignment 
between supply and demand hampers society’s ability to respond effectively and in 
a timely manner to the changing climate.

receNt History

The information technology (IT) infrastructure of 25 years ago was well suited to 
the science culture of that era. Data volumes were relatively small, and therefore 
each data element was precious. IT systems were relatively expensive and were 
accessible only to experts. The fundamental workflow relied on a data collection 
system (e.g., a laboratory or a field sensor), transfer into a data storage system, data 
processing and analysis, visualization, and publication. 

Figure 1 shows the architecture of NASA’s Earth Observing System Data and 
Information System (EOSDIS) from the late 1980s. Although many thought that 
EOSDIS was too ambitious (it planned for 1 terabyte per day of data), the primary 
argument against it was that it was too centralized for a system that needed to 
be science driven. EOSDIS was perceived to be a data factory, operating under a 
set of rigorous requirements with little opportunity for knowledge or technology 
infusion. Ultimately, the argument was not about centralized versus decentral-
ized but rather who would control the requirements: the science community or the 
NASA contractor. The underlying architecture, with its well-defined (and relatively 
modest-sized) data flows and mix of centralized and distributed components, has 
remained undisturbed, even as the World Wide Web, the Internet, and the volume 
of online data have grown exponentially. 
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tHe PreseNt Day

Today, the suite of national supercomputer centers as well as the notion of “cloud 
computing” looks much the same as the architecture shown in Figure 1. It doesn’t 
matter whether the network connection is an RS-232 asynchronous connection, 
a dial-up modem, or a gigabit network, or whether the device on the scientist’s 
desktop is a VT100 graphics terminal or a high-end multicore workstation. Virtual-
ized (but distributed) repositories of data storage and computing capabilities are 
accessed via network by relatively low-capability devices. 

Moore’s Law has had 25 years to play out since the design of EOSDIS. Although 
we generally focus on the increases in capacity and the precipitous decline in the 
price/performance ratio, the pace of rapid technological innovation has placed enor-
mous pressure on the traditional modes of scientific research. The vast amounts of 
data have greatly reduced the value of an individual data element, and we are no 

Client

EOSDIS
Data Server

External Data
Sources

Data Collections

Distributed
Search

Advertising

Data
Processing

Planning

Remote Data
Servers

Local System
ManagementOther Sites

Internal/External
“Users” Data

Ingest
Media

Distribution

Other Sites

Prod. requests
Data availablility

Data inputs
and outputs

Data search
& access

Ingested 
data

Plans

System
management

information

Direct 
access

Data search 
& access

Find
service

provider

Advertise

Dictionary
information

Advertisements

Figure 1. 

NASA’s Earth Observing System Data and Information System (EOSDIS) as planned in 1989. 



SCIENTIFIC INFRASTRUCTURE1 1 4

longer data-limited but insight-limited. “Data-intensive” should not refer just to the 
centralized repositories but also to the far greater volumes of data that are network-
accessible in offices, labs, and homes and by sensors and portable devices. Thus, 
data-intensive computing should be considered more than just the ability to store 
and move larger amounts of data. The complexity of these new datasets as well as 
the increasing diversity of the data flows is rendering the traditional compute/data-
center model obsolete for modern scientific research. 

imPlicatioNs for scieNce

IT has affected the science community in two ways. First, it has led to the  
commoditization of generic storage and computing. For science tasks that can be 
accomplished through commodity services, such services are a reasonable option. 
It will always be more cost effective to use low-profit-margin, high-volume services 
through centralized mechanisms such as cloud computing. Thus more universities 
are relying on such services for data backup, e-mail, office productivity applica-
tions, and so on. 

The second way that IT has affected the science community is through radical 
personalization. With personal access to teraflops of computing and terabytes of 
storage, scientists can create their own compute clouds. Innovation and new sci-
ence services will come from the edges of the networks, not the commodity-driven 
datacenters. Moreover, not just scientists but the vastly larger number of sensors 
and laboratory instruments will soon be connected to the Internet with their own 
local computation and storage services. The challenge is to harness the power of 
this new network of massively distributed knowledge services.

Today, scientific discovery is not accomplished solely through the well-defined, 
rigorous process of hypothesis testing. The vast volumes of data, the complex and 
hard-to-discover relationships, the intense and shifting types of collaboration be-
tween disciplines, and new types of near-real-time publishing are adding pattern 
and rule discovery to the scientific method [6]. Especially in the area of climate 
science and policy, we could see a convergence of this new type of data-intensive 
research and the new generation of IT capabilities.

The alignment of science supply and demand in the context of continuing sci-
entific uncertainty will depend on seeking out new relationships, overcoming lan-
guage and cultural barriers to enable collaboration, and merging models and data 
to evaluate scenarios. This process has far more in common with network gaming 
than with the traditional scientific method. Capturing the important elements of 
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data preservation, collaboration, provenance, and accountability will require new 
approaches in the highly distributed, data-intensive research community.

Instead of well-defined data networks and factories coupled with an individually 
based publishing system that relies on peer review and tenure, this new research 
enterprise will be more unruly and less predictable, resembling an ecosystem in its 
approach to knowledge discovery. That is, it will include loose networks of poten-
tial services, rapid innovation at the edges, and a much closer partnership between 
those who create knowledge and those who use it. As with every ecosystem, emer-
gent (and sometimes unpredictable) behavior will be a dominant feature.

Our existing institutions—including federal agencies and research universities—
will be challenged by these new structures. Access to data and computation as well 
as new collaborators will not require the physical structure of a university or mil-
lions of dollars in federal grants. Moreover, the rigors of tenure and its strong em-
phasis on individual achievement in a single scientific discipline may work against 
these new approaches. We need an organization that integrates natural science 
with socioeconomic science, balances science with technology, focuses on systems 
thinking, supports flexible and interdisciplinary approaches to long-term problem 
solving, integrates knowledge creation and knowledge use, and balances individual 
and group achievement. 

Such a new organization could pioneer integrated approaches to a sustainable 
future, approaches that are aimed at understanding the variety of possible futures. 
It would focus on global-scale processes that are manifested on a regional scale 
with pronounced socioeconomic consequences. Rather than a traditional academic 
organization with its relatively static set of tenure-track professors, a new organiza-
tion could take more risks, build and develop new partnerships, and bring in people 
with the talent needed for particular tasks. Much like in the U.S. television series 
Mission Impossible, we will bring together people from around the world to address 
specific problems—in this case, climate change issues.

makiNg it HaPPeN

How can today’s IT enable this type of new organization and this new type of sci-
ence? In the EOSDIS era, it was thought that relational databases would provide the 
essential services needed to manage the vast volumes of data coming from the EOS 
satellites. Although database technology provided the baseline services needed for 
the standard EOS data products, it did not capture the innovation at the edges of 
the system where science was in control. Today, semantic webs and ontologies are 
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being proposed as a means to enable knowledge discovery and collaboration. How-
ever, as with databases, it is likely that the science community will be reluctant to 
use these inherently complex tools except for the most mundane tasks.

Ultimately, digital technology can provide only relatively sparse descriptions of 
the richness and complexity of the real world. Moreover, seeking the unusual and 
unexpected requires creativity and insight—processes that are difficult to represent 
in a rigid digital framework. On the other hand, simply relying on PageRank1-like 
statistical correlations based on usage will not necessarily lead to detection of the 
rare and the unexpected. However, new IT tools for the data-intensive world can 
provide the ability to “filter” these data volumes down to a manageable level as well 
as provide visualization and presentation services to make it easier to gain creative 
insights and build collaborations. 

The architecture for data-intensive computing should be based on storage, com-
puting, and presentation services at every node of an interconnected network. Pro-
viding standard, extensible frameworks that accommodate innovation at the net-
work edges should enable these knowledge “ecosystems” to form and evolve as the 
needs of climate science and policy change.
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