Computational Efficiency of the Finite Element Method based on Second-Order Radiative Transfer Equation

Jun-Ming Zhao (赵军明) J. Y. Tan and L. H. Liu

School of Energy Science and Engineering Harbin Institute of Technology (**HIT**) June 17, 2010

Background

- Numerical insight into RTE
- Difficulties in numerical solving RTE
- Solution to the difficulties
- Second order RTE
- **Objective of this work**
- Formulation and Implementation
- **Results and Discussion**

First-Order Radiative Transfer Equation (FORTE, RTE) :

$$\mathbf{\Omega} \cdot \nabla I + (\kappa_a + \kappa_s)I = \kappa_a I_b + \frac{\kappa_s}{4\pi} \int_{4\pi} I(\mathbf{r}, \mathbf{\Omega}) \Phi(\mathbf{\Omega}, \mathbf{\Omega}') d\Omega$$
Input radiative energy Scattering medium

Boundary condition:

$$I(\mathbf{r}_{w}, \mathbf{\Omega}) = \overline{I}_{bw}(\mathbf{r}_{w}), \qquad \mathbf{n}_{w} \cdot \mathbf{\Omega} > 0$$

$$\mathbf{\Omega} \cdot \nabla I + \beta I = \kappa_a I_b + \frac{\kappa_s}{4\pi} \int_{4\pi} I(\mathbf{r}, \mathbf{\Omega}') \Phi(\mathbf{\Omega}', \mathbf{\Omega}) d\Omega'$$

If take direction as "velocity", what it look like?

 $\mathbf{V} \cdot \nabla I + \beta I = S$

$$\mathbf{\Omega} \cdot \nabla I + \beta I = \kappa_a I_b + \frac{\kappa_s}{4\pi} \int_{4\pi} I(\mathbf{r}, \mathbf{\Omega}') \Phi(\mathbf{\Omega}', \mathbf{\Omega}) d\Omega'$$

If take direction as "velocity", what it look like?

$$\mathbf{V} \cdot \nabla I + \alpha \mathbf{\nabla} I + \beta I = S$$

$$\mathbf{\Omega} \cdot \nabla I + \beta I = \kappa_a I_b + \frac{\kappa_s}{4\pi} \int_{4\pi} I(\mathbf{r}, \mathbf{\Omega}') \Phi(\mathbf{\Omega}', \mathbf{\Omega}) d\Omega'$$

If take direction as "velocity", what it look like?

Due to the absence of diffusion term, it is a Convectiondominated type of general convection diffusion equation

Difficulties in Numerical Solving RTE

1) Stability problem

Caused by Convection-dominated characteristics of RTE

Difficulties in Numerical Solving RTE

1) Stability problem

Caused by Convection-dominated characteristics of RTE

2) False Scattering

- Num. Phenomena: False energy diffusion
- Cause: Insufficient spatial accuracy

Difficulties in Numerical Solving RTE

1) Stability problem

Caused by Convection-dominated characteristics of RTE

2) False Scattering

- Num. Phenomena: False energy scattering
- Cause: Insufficient spatial accuracy

3) "Ray Effects"

- Num. Phenomena: nonphysical wiggles in results
- Cause: Insufficient angular quadrature accuracy, may coupled with 1) and 2)

Boundary load with large nonuniformity

Boundary load with large nonuniformity

Interior Obstacle shielding

1000K

Boundary load with large nonuniformity

Interior Obstacle shielding

Boundary load with large nonuniformity

Interior Obstacle shielding

Zhao & Liu (JQSRT, 2007)

Solution to Difficulties

1) Stability problem

- Basic rationale
 - (A) Upwinding in discretization, artificial diffusion ...
 - (B) Transform FORTE to second order equation, or cancel the convection term
 - Even-Parity formulation of RTE (EPF-RTE)
 - Second Order RTE (SORTE)
- 2) False Scattering
- 3) "Ray Effects"

- No artificial diffusion is needed to be intentionally added
- Based on the equation, radiative transfer can be solved stably with many methods, FEM, FVM, Meshless method,
- Hence it is a unified approach, one for all

Disadvantage of EPF-RTE

- Solution variable is not radiative intensity
- Difficult to be extended to anisotropic scattering media

Derivation

$$\frac{\mathrm{d}}{\mathrm{d}s}I + \beta I = \kappa_a I_b + \frac{\kappa_s}{4\pi} \int_{4\pi} I(\mathbf{r}, \mathbf{\Omega}') \Phi(\mathbf{\Omega}', \mathbf{\Omega}) \mathrm{d}\Omega'$$

Introduction to SORTE

Derivation

$$\frac{1}{\beta} \frac{\mathrm{d}}{\mathrm{d}s} I + I = \frac{1}{\beta} S$$

Derivation

$$\frac{d}{ds} \left[\frac{1}{\beta} \frac{d}{ds} I + I = \frac{1}{\beta} S \right]$$
$$\frac{d}{ds} \left[\frac{1}{\beta} \frac{d}{ds} I \right] + \frac{d}{ds} I = \frac{d}{ds} \left[\frac{1}{\beta} S \right]$$
$$-\frac{d}{ds} \left[\frac{1}{\beta} \frac{d}{ds} I \right] + \beta I = S - \frac{d}{ds} \left[\frac{1}{\beta} S \right]$$

Second Order Radiative Transfer Equation (SORTE)[*Zhao & Liu*(2007)]:

$$-\beta^{-1}\mathbf{\Omega}\cdot\nabla\left[\beta^{-1}\mathbf{\Omega}\cdot\nabla I\right] + I = S - \beta^{-1}\mathbf{\Omega}\cdot\nabla S$$

Properties of the SORTE

- Convection term is cancelled and replaced by a diffusion term
- Solution variable is intensity
- Can be easily applied to anisotropic scattering media, without limit on general applicability of FORTE

Introduction to SORTE

Boundary conditions

Solved intensity distribution in a slab with a Gaussian hill source

[Zhao & Liu(2007)]

- □ What is the weakness of the SORTE?
 - Probably the most important is the computational efficiency of the numerical methods based on it
- Which is crucial for broad application of this approach.
- □ As such, this subject forms the major motivation of present research

Investigate the

accuracy and **solution cost** of finite element method (FEM) based on the **SORTE**

SORTE in 2D can be written as:

$$(\mu^m)^2 \frac{\partial^2 I^m}{\partial x^2} + (\eta^m)^2 \frac{\partial^2 I^m}{\partial y^2} + 2\mu^m \eta^m \frac{\partial^2 I^m}{\partial x \partial y} - \beta^2 I^m = U^m$$

$$U^m = \mathbf{\Omega}^m \cdot \nabla S^m - \beta S^m$$

FEM discretization of the SORTE:

1) FEM approximation $I^m(\mathbf{r}) \simeq \sum_{i=1}^{N_{sol}} I_i^m \phi_i(\mathbf{r})$ 2) Galerkin approach $\sum_{i=1}^{N_{sol}} I_i^m \int_{V} \left| (\mu^m)^2 \frac{\partial^2 I^m}{\partial x^2} + (\eta^m)^2 \frac{\partial^2 I^m}{\partial v^2} + 2\mu^m \eta^m \frac{\partial^2 I^m}{\partial x \partial v} - \beta^2 I^m \right| \phi_j(\mathbf{r}) dV$ $= \int_{V} U^{m}(\mathbf{r}) \phi_{j}(\mathbf{r}) dV$ **3**) final matrix form: $\mathbf{K}^{m} \mathbf{I}^{m} = \mathbf{H}^{m}$

By using tool matrices approach [Zhao & Liu (2006)]:

$$\mathbf{K}^{m} = (\mu^{m})^{2} \mathbf{A}^{xx} + \mu^{m} \eta^{m} \mathbf{A}^{xy} + \eta^{m} \mu^{m} (\mathbf{A}^{xy})^{T} + (\eta^{m})^{2} \mathbf{A}^{yy} + \beta^{2} \mathbf{B}^{oo} + \beta (\mu^{m} \mathbf{N}^{x} + \eta^{m} \mathbf{N}^{y}) \mathbf{H}^{m} = \left[\beta \mathbf{B}^{oo} - \mu^{m} (\mathbf{B}^{xo})^{T} - \eta^{m} (\mathbf{B}^{yo})^{T} + \beta (\mu^{m} \mathbf{N}^{x} + \eta^{m} \mathbf{N}^{y}) \right] \mathbf{S}^{m} A_{ji}^{xx} = \int_{V} \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dV \quad A_{ji}^{xy} = \int_{V} \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} dV \quad A_{jn}^{yy} = \int_{V} \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} dV B_{ji}^{xo} = \int_{V} \frac{\partial \phi_{j}}{\partial x} \phi_{i} dV \quad B_{jn}^{yo} = \int_{V} \frac{\partial \phi_{j}}{\partial y} \phi_{i} dV \quad B_{jn}^{oo} = \int_{V} \phi_{j} \phi_{i} dV N_{ji}^{x} = \int_{V} \phi_{j} \phi_{i} (\mathbf{n}_{w} \cdot \mathbf{i}) dA \quad N_{ji}^{y} = \int_{V} \phi_{j} \phi_{i} (\mathbf{n}_{w} \cdot \mathbf{j}) dA$$

FEM discretization of the FORTE:

1) FEM approximation

$$I^m(\mathbf{r}) \simeq \sum_{i=1}^{N_{sol}} I_i^m \phi_i(\mathbf{r})$$

- 2) Galerkin and Least Squares approach
- 3) final matrix form:

$$\mathbf{K}^m \mathbf{I}^m = \mathbf{H}^m$$

FORTE with Galerkin scheme:

$$\mathbf{K}^{m} = \mu^{m} (\mathbf{B}^{xo})^{T} + \eta^{m} (\mathbf{B}^{yo})^{T} + \beta \mathbf{B}^{oo}$$
$$\mathbf{H}^{m} = \mathbf{B}^{oo} \mathbf{S}^{m}$$

FORTE with Least square scheme:

$$\mathbf{K}^{m} = (\mu^{m})^{2} \mathbf{A}^{xx} + \mu^{m} \eta^{m} \mathbf{A}^{xy} + \mu^{m} \beta \mathbf{B}^{xo}$$
$$+ \eta^{m} \mu^{m} (\mathbf{A}^{xy})^{T} + (\eta^{m})^{2} \mathbf{A}^{yy} + \eta^{m} \beta \mathbf{B}^{yo}$$
$$+ \beta \mu^{m} (\mathbf{B}^{xo})^{T} + \beta \eta^{m} (\mathbf{B}^{yo})^{T} + (\beta)^{2} \mathbf{B}^{oo}$$
$$\mathbf{H}^{m} = (\mu^{m} \mathbf{B}^{xo} + \eta^{m} \mathbf{B}^{yo} + \xi^{m} \mathbf{B}^{zo} + \beta \mathbf{B}^{oo}) \mathbf{S}^{m}$$

Generic Solution procedures

Case 1: Semicircular enclosure with a circular hole

Space: 272 elements, shape function is constructed through 3rd order Chebyshev approximation, Solid angle: $N_{\theta} \times N_{\phi} = 20$ $\times 40$

Case 2: Isotropically Scattering Medium in a Square Enclosure

6th International Symposium on Radiative Transfer (RAD-10), Antalya

- The accuracy of the FEM based on the SORTE is generally better than that based on the FORTE
- FEM based on SORTE is the most efficient than the FEMs based on the FORTE.

Questions & comments? Thanks for your attention!

