A FEW FACTS ABOUT HARMONIC MAPS

ZUJIN ZHANG

ABSTRACT. We state some basic facts about the harmonic maps. This is [1, 1.5].

Proposition 1. Let

- 1. $\Phi: M \to M \ a \ C^2$ -diffeomorphism;
- 2. and $u \in C^2(M; N)$ is a harmonic map with respect to (M, g).

Then

 $u \circ \Phi \in C^2(M; N)$ is a harmonic map with respect to (M, Φ^*g) .

Proof. For $v \in C^2(M; N)$, we have

$$\frac{1}{2}\int_{M}|\nabla v|_{g}^{2}\,\mathrm{d} v_{g}=\frac{1}{2}\int_{M}|\nabla (v\circ \varPhi)|_{\varPhi^{*}g}^{2}\,\mathrm{d} v_{\varPhi^{*}g}.$$

Proposition 2. Let

- 1. (M, g_1) be a Riemann surface;
- 2. $\Phi: (M, g_1) \rightarrow (M, g_2)$ be a conformal map;
- 3. and $u \in C^2(M; N)$ is a harmonic map with respect to (M, g_2) .

Then

$$u \circ \Phi \in C^2(M; N)$$
 is a harmonic map with respect to (M, g_1) .

Key words and phrases. harmonic map, diffeomorphism, conformal geometry.

Proof. By setting $\Phi^* g_2 = e^{2\varphi} g_1$, we have

$$\begin{split} E(v \circ \Phi, g_1) &= \frac{1}{2} \int_M tr_{g_1} \left((v \circ \Phi)^* h \right) dv_{g_1} \\ &= \frac{1}{2} \int_M tr_{e^{-2\varphi} \Phi^* g_2} \left(\Phi^* \left(v^* h \right) \right) e^{-2\varphi} dv_{\Phi^* g_2} \ (n = \dim M = 2) \\ &= \frac{1}{2} \int_M tr_{\Phi^* g_2} \left(\Phi^* \left(v^* h \right) \right) dv_{\Phi^* g_2} \left((cA)^{-1} = \frac{1}{c} A^{-1} \right) \\ &= \frac{1}{2} \int_M tr_{g_2} \left(v^* h \right) dv_{g_2} \\ &= E(v, g_2), \end{split}$$

for all $v \in C^2(M; N)$.

Remark 3. 1. Harmonic maps from S¹ to N correspond to closed geodesic in N.

- 2. The set of harmonic maps from a Riemannian surface *M* depends only on the conformal structure of *M*.
- 3. Let $Id : (M,g) \rightarrow (M,g)$ be the identity map. then Id is a harmonic map.

Proof. Since u(x) = Id(x) = x, we have

$$\begin{aligned} \tau^{k}(u) &= g^{\alpha\beta} \left[u^{k}_{\alpha\beta} - \left(\Gamma^{M} \right)^{\gamma}_{\alpha\beta} u^{k}_{\gamma} + \left(\Gamma^{N} \right)^{k}_{ij} (u) u^{i}_{\alpha} u^{j}_{\beta} \right] \\ &= g^{\alpha\beta} \left[0 - \left(\Gamma^{M} \right)^{\gamma}_{\alpha\beta} \delta^{k}_{\gamma} + \left(\Gamma^{M} \right)^{k}_{ij} \delta^{i}_{\alpha} \delta^{j}_{\beta} \right] \\ &= 0. \end{aligned}$$

4. For $n = \dim M = 2$, any conformal map $\Phi : (M, g_1) \rightarrow (M, g_2)$ is a harmonic map.

Proof.

$$(M,g_1) \xrightarrow{\Phi} (M,g_2) \xrightarrow{Id} (M,g_2).$$

REFERENCES

 F.H. Lin, C.Y. Wang, *The analysis of harmonic maps and their heat flows*. World Scientific Publishing Co. Pte. Ltd. 2008.

DEPARTMENT OF MATHEMATICS, SUN YAT-SEN UNIVERSITY, GUANGZHOU, 510275, P.R. CHINA

E-mail address: uia.china@gmail.com