1	MAPPING THE EPISTATIC NETWORK UNDERLYING MURINE
2	REPRODUCTIVE FATPAD VARIATION
3	
4	Joseph P. Jarvis ^{1,2} and James M. Cheverud ¹
5	
6	¹ Department of Anatomy & Neurobiology, Washington University School of Medicine,
7	St. Louis, Missouri, 63110
8	² Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

24	Running Title: Murine Fatpad Epistasis
25	
26	Keywords: Genetic Architecture, Composite Interval Mapping, Pair-wise Interactions,
27	Epistatic Positional Candidates
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	Address Correspondence to:
38	
39	Joseph P. Jarvis Ph.D.
40	Tishkoff Lab - Dept of Genetics
41	University of Pennsylvania
42	422 Clinical Research Building
43	415 Curie Blvd
44	Philadelphia, PA 19104-6145
45	215-746-2322
46	E-mail: jarvisj@mail.med.upenn.edu

ABSTRACT

48	Genome-wide mapping analyses are now commonplace in many species and
49	several networks of interacting loci have been reported. However, relatively few details
50	regarding epistatic interactions and their contribution to complex trait variation in multi-
51	cellular organisms are available and the identification of positional candidate loci for
52	epistatic QTL (epiQTL) is hampered, especially in mammals, by the limited genetic
53	resolution inherent in most study designs. Here we further investigate the genetic
54	architecture of reproductive fatpad weight in mice using the F_{10} generation of the LG,SM
55	Advanced Intercross (AI) line. We apply multiple mapping techniques including a
56	single-locus model, locus-specific composite interval mapping, and tests for multiple
57	QTL per chromosome to the twelve chromosomes known to harbor single locus QTL
58	(slQTL) affecting obesity in this cross. We also perform a genome-wide scan for pair-
59	wise epistasis. Using this combination of approaches we detect 199 peaks spread over all
60	19 autosomes that potentially contribute to trait variation including all eight original F_2
61	loci (Adip1-8), novel slQTL peaks on chromosomes 7 and 9, and several novel epistatic
62	loci. Extensive epistasis is confirmed involving both slQTL confidence intervals as well
63	as regions that show no significant additive or dominance effects. These results provide
64	important new insights into mapping complex genetic architectures and the role of
65	epistasis in complex trait variation.

INTRODUCTION

67	The development and elaboration of techniques such as interval mapping (Lander
68	and Botstein 1989), composite interval mapping (Zeng 1994), and methods based on
69	complex pedigree structures (Jannink et al. 2001) has produced an extensive repertoire
70	for the statistical exploration of genotype-phenotype relationships, especially for single
71	loci. Using these approaches genome-wide analyses have identified single-locus QTL
72	(slQTL) underlying variance in characters as varied as agronomic traits and pest
73	resistance in corn (Papst et al. 2004), life span in fruit flies (Wilson et al. 2006), alkylator
74	induced cancer susceptibility in mice (Fenske et al. 2006), murine skeletal morphology
75	(Kenney-Hunt et al. 2008), and an ever expanding list of human diseases and disorders
76	including Age-Related Macular Degeneration (e.g. Klein et al. 2005), Type 2 diabetes
77	(e.g. Sladek et al. 2007; Zeggini et al. 2008), and Crohn's disase (e.g. Duerr et al. 2006).
78	In addition, several studies have successfully employed epistatic QTL (epiQTL) mapping
79	strategies to describe multi-locus networks (e.g. Cheverud et al. 2001; Stylianou et al.
80	2006; Wentzell et al. 2007; Fawcett et al. 2008, Fawcett et al. 2010).
81	However, most mapping studies in model systems involve either F2 intercross
82	populations or Recombinant Inbred (RI) strain panels (see also Hanlon et al. 2006).
83	These populations harbor limited recombination and so tend to identify relatively large
84	confidence intervals, complicating the physiological investigation of statistical results.
85	Furthermore, while recombinant Inbred (RI) strain sets represent a four-fold expansion of
86	the F ₂ recombination-based map, they require a minimum of 20 generations of brother-
87	sister mating (Silver 1995) and the number of strains per set is usually low, especially in
88	mammals. Conversely, the production of Advanced Intercross (AI) lines involves many

89 generations of outbreeding in a relatively large population. This preserves 90 heterozygosity, retains many more recombinant gametes in the gene pool, decreases the 91 average size of segregating linkage blocks, and increases mapping resolution (Haldane 92 and Waddington 1931; Bartlett and Haldane 1935; Hanson 1959a; Hanson 1959b; 93 Hanson 1959c; Hanson 1959d; Darvasi and Soller 1995; Rockman and Kruglyak 2008). 94 Specifically, the F₁₀ generation of a murine AI line represents an approximately five-fold 95 expansion of the F2 map and thus an improvement in resolution over both F2 intercross 96 and RI line study designs.

97 Obesity and related phenotypes are among the most intensively studied complex 98 traits in mice and the LG,SM AI has proven particularly useful in the identification of 99 adiposity QTLs. Previous work in this cross has characterized over 70 loci contributing 100 to variance in fatpad weight, body weight and relevant organ weights (Cheverud et al. 101 1999; Cheverud et al. 2001; Cheverud et al. 2004; Fawcett et al. 2008). In addition, a 102 recent study used the combined F_9 and F_{10} generations (Fawcett et al. 2010) to fine-map 103 loci for a suite of obesity related characters and achieved an average confidence interval 104 for fatpad loci of 4.14 Mb. These CI were subsequently tested for epistasis and extensive 105 interaction was confirmed, though several direct effect loci identified in the F2 and F2/3 106 generations failed to replicate and were thus not included. However, in a full genome-107 wide scan for pair-wise epistasis in the F₂ generation of this cross (Jarvis and Cheverud 108 2009) 38 fatpad loci that were not identified using a single locus mapping model show 109 significant epistatic interactions. Consistent with results from other experimental systems 110 (reviewed in Phillips 2008) this suggests that many biologically relevant loci are invisible 111 to single locus scans. Thus, combining the increased genetic resolution of an F_{10} AI line

study, with the full range of single-locus and epistatic mapping strategies promises to produce novel insights into the contribution of epistatic interactions to variation in reproductive fatpad weight in mice. Furthermore, the accumulating data on positional candidate genes (*e.g.* Chehab 2008; Gat-Yablonski and Phillip 2008; Ichihara and Yamada 2008; Cheverud et al. 2009) provides the opportunity to explore functional hypotheses for identified loci and their interactions.

118 Utilizing the F_{10} generation of the LG,SM AI line (Cheverud et al. 2001) we 119 further characterized the complex genetic architecture underlying murine reproductive 120 fatpad weight. We first performed a slQTL scan on the original eight chromosomes 121 harboring direct effect loci in the F₂ generation (1, 6, 7, 8, 9, 12, 13, and 18) as well as 122 the four shown to harbor slQTL in the combined F_9 - F_{10} population (3, 4, 10 and 16; 123 Fawcett et al. 2010). Composite interval mapping and two-QTL tests were subsequently 124 performed, the latter when multiple loci on a single chromosome were suspected. 125 Finally, we carried out a full genome-wide scan for pair-wise epistasis. In order to 126 identify the most meaningful set of loci to screen for candidate genes, marker genotypes 127 representing slQTL and epiQTL that exceeded their appropriate thresholds were 128 combined in linear models, first for each chromosome separately and ultimately the entire 129 genetic system. Confidence intervals for peaks that remained significant in the full model 130 were screened for positional candidate loci and potential physiological interactions via 131 both the MGI database (www.informatics.jax.org/) and a literature search.

132

133

MATERIALS AND METHODS

134	Data: The population analyzed is the F_{10} generation (N = 1298; 85 full-sib
135	families; average litter size 8.45) of an Advanced Intercross (AI) line generated from an
136	F_2 intercross of the inbred mouse strains SM/J and LG/J (Chai 1956; Chai 1956;
137	Cheverud et al. 1996; Vaughn et al. 1999; Cheverud et al. 2001). The animal facility is
138	maintained at a constant temperature of 21°C with 12-hour light-dark cycles. Animals
139	were fed a standard rodent chow (PicoLab Rodent Chow 20 (#5053) with 12% of its
140	energy from fat, 23% from protein, and 65% from carbohydrate) ad libitum and were
141	weaned at 3 weeks of age. After weaning, animals were housed in single sex cages
142	containing no more than 5 individuals.
143	Between the F_2 and F_{10} generations the population was maintained at an effective
144	size of approximately 300 with 75 mating pairs and no variance in family size. Mating
145	between littermates was actively avoided. At greater than 13 weeks of age animals were
146	sacrificed and necropsies performed. The reproductive fatpads of each animal were
147	removed, combined and weighed on a digital scale to the nearest hundredth of a gram.
148	Phenotypes were statistically corrected for age at necropsy, sex, litter size, and parity
149	status (whether or not they were mated to produce the F_{11}) using multiple regression and
150	the residuals used for further analysis. Genotypes for each individual were obtained at
151	1470 polymorphic SNPs across the genome by Illumina (San Diego, USA) GoldenGate
152	Assay using DNA extracted from liver tissue obtained at necropsy. Inter-marker
153	genotypes were imputed at 1 cM intervals using the equations of Haley and Knott (1992).
154	Mapping Analyses: A single locus QTL (slQTL) scan at all measured and
155	imputed loci was first conducted on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 12, 13, 16, and
156	18 using the regression model:

158
$$Y_i = \mu + a * X_{ai} + d * X_{di} + error$$

(1)

159

160where Y_i is the vector of corrected phenotypes, μ is a constant, and X_{ai} and X_{di} are the161vectors of genotype scores; a and d are the fitted additive and dominance regression162coefficients respectively. The sums of squares for both model terms were pooled for163significance testing. The results of the full genome-wide slQTL mapping in the164combined F₉-F₁₀ generations were previously reported (Fawcett et al. 2010).165Composite interval (CI) mapping (Zeng 1994) was applied to the identified,

166 preliminary confidence intervals using the following model:

167

168
$$Y_{ijk} = \mu + a * X_{ai} + d * X_{di} + error | X_{aj} X_{dj} X_{ak} X_{dk}$$
(2)

169

In this case, X_{ai}, X_{di}, X_{ak}, and X_{dk} represent vectors of genotype scores at loci greater than 170 171 20 F₁₀ cM up- and down-stream of the confidence interval on whose effects the within-172 interval regressions were conditioned. This eliminates the effects of proximal and distal 173 QTL on the same chromosome from being confounded with the target QTL. When 174 multiple peaks on the same chromosome were suggested, the fit of all pair-wise two locus models were compared to the appropriate single locus case using a X^2 test with two 175 degrees of freedom ($X^2_{crit} = 2*abs[ln(1/p_{one})-ln(1/p_{two})]$, where p_{one} and p_{two} are p-values 176 from the one and two locus models respectively (Sokal and Rohlf 1995). 177

178	Finally all genome-wide, between-chromosome, pair-wise combinations of
179	measured and imputed autosomal loci were tested using the following epistatic mapping
180	model:
181	
182	$Y_{ij} = \mu + aa(X_{ai} * X_{aj}) + ad(X_{ai} * X_{dj}) + da(X_{di} * X_{aj}) + dd(X_{di} * X_{dj}) + error X_{ai} X_{di} X_{aj} X_{dj} $ (3)
183	
184	where aa, ad, da, and dd are the additive-by-additive, additive-by-dominance,
185	dominance-by-additive, and dominance-by-dominance epistasis regression coefficients
186	and $X_{ai} X_{di} X_{aj} X_{dj}$ represent vectors of the corresponding additive and dominance
187	genotypes at the two loci involved. The sums of squares and degrees of freedom for all
188	four epistatic components were pooled for initial significance testing. The raw
189	probability associated with each multiple regression for all mapping analyses above was
190	transformed to a linear scale using the base 10 logarithm of the inverse of the probability
191	of no epistasis (LPR = $log_{10}(1/p)$) producing values comparable to LOD scores obtained
192	through maximum likelihood analysis (Lander and Botstein 1989).
193	Thresholds: Interpretation of these analyses is complicated both by the large
194	number of comparisons involved as well as the family structure present in the population.
195	In order to account for these two issues simultaneously, simulations were performed
196	using the known pedigree of all individuals between the F_2 and F_{10} generations to
197	generate a null distribution of expected effects from which the appropriate single-locus
198	LPR threshold was determined (Fawcett et al. 2008, Norgard et al. 2009). Given a
199	heritability of reproductive fatpad weight in the F_{10} of 0.47 (from sib-correlations)
200	chromosome-specific thresholds for identifying novel slQTL ranged from 6.15

201	(chromosome 8) to 6.6 (chromosome 1). The experiment-wide threshold for novel slQTL
202	detection was 7.34. For the purposes of replication, a corrected point-wise threshold
203	(equivalent to $p = 0.05$) of 3.32 was applied for slQTL peaks within previously identified
204	confidence intervals.
205	Following the method described in Fawcett et al. (2010), the analysis-wide
206	epistasis threshold for the identification of novel interactions was calculated to be 8.33.
207	The threshold for tests between a given slQTL and all other unlinked markers in the
208	analysis was 6.06 and the analogous chromosome-specific thresholds ranged from 4.73
209	(chromosome 8) to 5.25 (chromosome 1). The corrected point-wise threshold for
210	epistatic tests between two slQTL was 3.44. Tests involving slQTL are partially
211	protected from multiple comparisons as they were identified with independent
212	information.
213	Confidence Intervals: Due to the complexity of our mapping strategy, the
214	conventional 1 LPR drop criterion was applied to define all reported confidence intervals.
215	When multiple peaks, either slQTL, epiQTL or both, occurred in the same region, the
216	most proximal and most distal 1 LPR drop was used to determine CI endpoints.
217	Confidence intervals (CI) for slQTL peaks were also calculated for each location
218	individually using the standard deviation of the simulated distribution of 1000 mapping
219	iterations involving known effects on simulated chromosomes (Norgard et al. 2009). The
220	two techniques yielded very similar CI for all slQTL though the simulation-based
221	intervals were slightly smaller.
222	Linear Models: We constructed and evaluated separate chromosome-specific

223 models using the linear model function in R (R Development Core Team) before

224	combining their results into a full model of the genetic system. This process began with
225	terms representing each significant effect at all slQTL peaks identified by the single locus
226	model (equation 1) and composite interval mapping (equation 2). For example, the
227	chromosome 1 model (see Figure 1A) began with five slQTL terms representing the
228	additive (p = 0.00726) and dominance (p = 0.0007) effects at 20.15 Mb, the additive (p =
229	0.000268) and dominance ($p = 0.0383$) effects at 70.77 Mb and the dominance effect ($p = 0.0383$)
230	1.06×10^{-06}) at 134.82 Mb. The additive effect at 134.82 Mb was non-significant in the
231	slQTL mapping model ($p = 0.868$) and so was not included. Likewise, the chromosome
232	13 model (see Figure 1B) included two terms representing the additive effects at 53.54
233	Mb ($p = 3.05 \times 10^{-06}$) and 90.61 Mb ($p = 4.88 \times 10^{-05}$) respectively. In this case, neither
234	dominance effect was significant in the slQTL mapping model ($p = 0.798$ and $p = 0.634$)
235	and so both were excluded. When considered jointly, some individual terms (e.g. the
236	dominance effect only at 70.77 Mb on chromosome 1) no longer remained significant (p
237	< 0.05) in Type I ANOVA tables (using the "anova" function). Such terms were
238	removed. For those chromosomes not found to harbor slQTL, a similar process was
239	performed beginning with all significant interactions.

Next, individual coefficients from the epistatic mapping model (*aa*, *ad*, *da*, *dd*; equation 3) at all peaks that exceeded their appropriate thresholds in the epiQTL scan were similarly examined to determine the type or types of interactions occurring. Terms representing all significant interactions were then added step-wise to each appropriate chromosome-specific model. Only epistatic terms that remained significant (p < 0.05) in both Type I and Type II ANOVA tables, using the R functions "anova" and "Anova" (the latter from the package "car") respectively and did not cause any established additive or

247 dominance effects to become non-significant (p < 0.05) were retained to define each final 248 chromosome-specific model. These stringent criteria were established in order to obtain 249 a tractable number of high-confidence CI to screen for positional candidates and 250 physiological interactions. 251 Next, additive and dominance terms from all chromosome-specific models were 252 combined and terms that became non-significant in either Type I or Type II ANOVA 253 tables (or both) were culled to define the "slQTL system." This model included 20 terms 254 at 18 loci (15 additive and 5 dominance; bold in Supplemental Table 1). Epistasis terms 255 significant in the chromosome-specific models were then added stepwise to the slQTL 256 system as above to define the "full model." In addition to the 20 marginal effect terms, 257 this model includes 23 interaction involving 26 different epiQTL confidence intervals. 258 Finally, since many epiQTL peaks occur at locations not represented in the slQTL 259 system, the appropriate additive and dominance terms for each interaction were added to 260 the full model to ensure that the identified epistatic contributions were not unduly biased 261 upward by variance attributable to single locus effects. This had relatively little effect 262 and resulted in the elimination of only 3 interactions, all of which are significant in Type 263 I tests. The results from the full model are reported with these nominally significant 264 terms noted in bold (Table 1, see below).

Candidate Genes: All CI for peaks identified in the full model were screened for
plausible positional candidate genes and known interactions. This involved both queries
of the MGI database for functional variants affecting adiposity as well as a broad
literature search and was intended to generate meaningful and testable physiological
hypotheses regarding the observed statistical associations.

271

RESULTS

272	Replication and Identification: Significant marginal effects, epistatic effects or
273	both are observed in the F_{10} population on all eight chromosomes harboring the original
274	Adip loci and three of the four additional chromosomes implicated in the combined F_9 - F_{10}
275	slQTL scan (Supplementary Figure 1). In the F_{10} alone, there were no significant slQTL
276	on chromosome 16. Similar to the results of Fawcett et al. (2010), peak LPR scores from
277	either the single locus scan or composite interval mapping at or near the confidence
278	intervals of five Adip loci exceeded the experiment-wide threshold (7.34) even for novel
279	QTL detection (<i>Adip1</i> : LPR = 9.2, <i>Adip2</i> : LPR = 8.9, <i>Adip3</i> : LPR = 8.3, <i>Adip5</i> : LPR =
280	9.6, and <i>Adip8</i> : LPR = 12.3). All three remaining F_2 loci exceed the point-wise threshold
281	(3.32) required for tests within previously defined confidence intervals ($Adip4$: LPR =
282	5.6, <i>Adip6</i> : LPR = 5.24; <i>Adip7</i> : LPR = 4.8). Additional slQTL on chromosomes 3, 4, and
283	10 also replicated. Interestingly, the chromosome 4 locus (Adip24, Fawcett et al. 2010;
284	LPR = 12.65) roughly corresponds to two loci previously reported in the literature as
285	Adip11 and Adip12 in a cross between C57BL/6J and DBA/2J (Keightley et al. 1996;
286	Brockmann et al. 1998; Stylianou et al. 2006). Finally, composite interval mapping
287	revealed novel loci on chromosomes 7 and 9 that both exceed their appropriate
288	chromosome-specific thresholds of 6.36 and 6.38 respectively. A total of 22 potential
289	marginal effect peaks were identified (Supplementary Table 1).
290	epiQTL Mapping: In the genome-wide scan for epistasis 177 peaks involving
291	217 interactions exceeded their appropriate significance thresholds and physically cluster

into approximately 51 potential epiQTL (Supplementary Table 1). Additive-by-additive

interactions were the most common (98), Additive-by-Dominance or Dominance-byAdditive were the next most common (97) and Dominance-by-Dominance interactions
were the most rare (22). Consistent with the results of Jarvis and Cheverud (2009) and
several other studies (see Phillips 2008), many of these occurred at locations showing no
significant marginal effects in this cross, though some occurred at locations significant in
slQTL scans in other crosses (Table 1; Figure 1; Supplementary Table 1; Supplementary
Figures 2-20).

300 **Linear Models:** In total, we identified 199 slQTL and epiQTL peaks that 301 potentially contribute to trait variation. These cluster into roughly 73 confidence 302 intervals showing a variety of combinations of additive, dominance and epistatic effects 303 (Supplementary Table 1). In order to identify the most robust signals we systematically 304 added vectors of genotype scores representing each into linear models and determined the 305 set that is simultaneously significant in both Type I and Type II tests. We began by 306 establishing a single locus model that contained all slQTL peaks that remain significant 307 together. This slQTL system includes 20 marginal effect terms (15 additive and 5 dominance) shows an adjusted R^2 value of 0.2254 (F statistic = 18.64 on 20 and 1281 df). 308 309 We next added epistatic peaks stepwise to generate a full model of the genetic system. 310 This full model (Table 1) includes 23 additional interaction terms (9 aa, 10 ad/da, and 4 dd) involving 26 different epiQTL confidence intervals and shows an adjusted R^2 value 311 312 of 0.3322 (F statistic = 15.71 on 43 and 1257 df). Using a chi-square goodness of fit test 313 with 23 (43-20) degrees of freedom this represents a highly significant improvement in fit over the base slQTL model ($p < 10^{-25}$). Following the addition of all marginal terms 314 315 involved in epistasis, three interaction terms become non-significant at the p < 0.05 level

in either the Type I or the Type II tables or both (bold terms in Table 1). Removing these interactions from the full model, its adjusted R² value is 0.3220 (F statistic = 16.07 on 40 and 1260 df), which also represents a highly significant improvement in model fit (p < 10^{-20}).

320 Positional Candidates: While in-depth functional assays and other detailed 321 molecular studies are required to sort out the biological basis of QTL and their 322 interactions, examination of positional candidate genes in slQTL confidence intervals 323 suggests testable physiological hypotheses for several observed statistical effects. In 324 general, confidence intervals contain a variety of candidate loci including transcription 325 factors, components of various signaling cascades (e.g. the Wnt, Insulin, and Igf signaling 326 networks), neuro-endocrine hormones and their receptors, as well as genes directly 327 implicated in glucose processing and metabolism. For example, the CI found at 328 6:133.92-142.67 Mb contains the promising candidate *Lrp6*, a low-density lipoprotein 329 receptor-related protein that is thought to contribute to variation in a variety of metabolic 330 risk factors in humans (Kahn et al. 2007; Mani et al. 2007) and Cdkn1b, a cyclin-331 dependent kinase inhibitor with known effects on pancreatic islet mass in diabetic mice 332 (Uchida et al. 2005). Both *Lrp6* and *Cdkn1b* have differences in expression level in white fat ($p = 3.82 \times 10^{-12}$ and 0.013, respectively) and in the liver ($p = 1.62 \times 10^{-13}$ and 333 7.48 x 10^{-8} , respectively) between the two parental lines in this cross (Cheverud, 334 335 unpublished results). The CI 18:58.77-80.76 Mb shows potential functional links to 336 mammalian neurotransmitter signaling via Htr4 (Gardner et. al. 2008), as do 13:40.74-337 55.35 Mb via Cplx2 (Brachya et al. 2006) and Drd1a (de Leeuw van Weenen et al. 2009). 338 In addition, the region 6:114.73-121.97 Mb contains neuro-endocrine candidates Adipor2

339 (Yamauchi et al. 2007; Ziemke and Mantzoros 2010) and Ankrd26 (Bera et al. 2008),

which also shows a significant difference in expression in liver between LG/J and SM/J
(p = 0.0002; Cheverud, unpublished results). Together, these loci suggest a functionally
similar genetic architecture to the emerging picture of Type 2 diabetes in humans (Doria
et al. 2008).

344 There are also a number of strong candidate loci for observed epistatic 345 interactions. The most striking involves the CIs 13:0-24.24 Mb and 1:118.37-138.01 Mb, 346 which contain Inhba and Inhbb respectively. The proteins encoded by these loci are 347 components of the Activin and Inhibin complexes which have wide-ranging effects on a 348 variety of physiologic, homeostatic and metabolic processes including mammalian 349 reproduction, inflammation and adipocyte differentiation (Woodruff and Mather 1995; 350 Werner et al. 2006; Hirai et al. 2005). Interestingly, 13:0-24.24 Mb participates in five 351 separate interactions that are significant in the full model (Table 1) and appears to interact 352 with a region (9:68.10-95.10 Mb) containing an important receptor for serotonin (*Htr1b*). 353 Glutamate signaling and metabolism are also likely to underlie a portion of fatpad 354 variation due to epistasis in this cross. The interacting epiQTL CI 1:42.41-52.71 Mb and 355 9:68.10-95.10 Mb contain the enzyme that catalyses the first reaction in the primary 356 pathway for the renal catabolism of glutamine (Gls) and the first rate limiting enzyme in 357 glutathione synthesis (Gclc) respectively. Gls also shows differential expression in white 358 fat cells between the parental lines (p = 0.00097). Ghrelin and its associated pathways 359 also appear as likely candidates. For example, 1:118.37-138.01 Mb contains Gpr39, a 360 member of the ghrelin receptor family. This CI interacts with 6:133.92-142.67 Mb which 361 harbors *Pde3a*, a locus known to be downstream of ghrelin signaling in platelets

362	(Elbatarny et al. 2007) and which shows significant differences in gene expression in
363	white fat between SM/J and LG/J (p=0.00018), and 12:73.42-89.12 Mb which contains
364	<i>Hifla</i> , whose protein product increases the expression of <i>Vegf</i> (Hoffmann et al. 2008).
365	Interestingly, <i>Vegfc</i> shows a significant difference in expression in white fat between the
366	parental lines ($p = 0.001$) and Vegfb shows differences in liver ($p = 0.009$). Ghrelin is
367	also known to increase the expression of Vegf in human luteal cells (Tropea et al. 2007)
368	and Vegf in turn, is thought to be an important regulator of adipogenesis and obesity (Cao
369	2007). A final interesting epiQTL CI is 12:108.99-120.28 Mb. It contains Dlk1, Meg3,
370	and <i>Rtl1</i> , all three of which appear to participate in an interacting (and imprinted)
371	network affecting growth in mice (Gabory et al. 2009).
372	
373	DISCUSSION
374	While the family structure of an outbred population complicates some aspects of
375	the mapping process, the F_{10} (and later) generations of advanced intercross lines hold an
376	intrinsic advantage in mapping resolution over more conventional study designs. Here
377	this advantage translated into a variety of results with important implications for mapping
378	complex trait variation and new insights into the genetic architecture of murine fatpad
379	weight.
380	The first and most striking result of this analysis from a mapping perspective is
381	the relatively low level of overlap in the physical positions of slQTL and epiQTL peaks
382	despite the analytical bias towards finding epistasis involving slQTLs due to their
383	protected status with respect to multiple comparisons. Though slight discrepancies may
384	be expected due to subtle patterns of linkage, larger map distances between peaks likely

385 indicate that multiple functional variants are present. Indeed, when both types are 386 observed in close proximity, epistatic peaks tend not to line up well with their single-387 locus counterparts and epiOTL are frequently observed in regions showing no significant 388 marginal effects at all (Figure 1; Table 1; Supplementary Table 1; Supplementary Figures 389 1-20). This supports the notion that a relatively large number of variable, functionally 390 relevant loci exert their influence on complex trait variation primarily via epistatic 391 interactions rather than through conventional additive and dominance effects. It is also 392 interesting to note that some regions interact with multiple locations in the genome. For 393 example, proximal chromosome 13 (13:0-24.24 Mb) shows five significant interactions 394 in the full model including two with separate locations on chromosome 1. Identifying 395 such repeated signals may be useful in developing significance thresholds that help 396 ameliorate the penalties incurred by performing multiple comparisons. Such consistency 397 may also help distinguish epiQTL at the center versus the edges of functional networks. 398 Next, in keeping with observations in congenic lines (e.g. Christians et al. 2006) 399 as well as other recent slQTL mapping studies (Fawcett et al. 2010), F₂ confidence 400 intervals were frequently observed to divide into multiple significant slQTL (Figure 1, 401 Supplementary Figure 1). Interestingly, we observe similar splitting of single-locus and 402 epistatic signals. For example, at the proximal end of chromosome 1 (Figure 1A) 403 marginal effect peaks observed in the F₂, combined F₂₋₃, and in an intercross between SM 404 and NZO (obq7; Taylor et al. 2001) appear to resolve in our mapping population into 405 three distinct peaks with two marginal effect loci flanking an epiQTL. This suggests that 406 the original F_2 and the subsequent F_{2-3} signals in this cross were composites of both 407 single-locus and epistatic effects and that the boundaries of previously reported CI may

408 have been influenced by epistatic contributions to single-locus values. Thus, current 409 estimates of the number of loci underlying trait variation are likely to be overly 410 conservative and reported effect size estimates are potentially biased by the presence of 411 multiple, closely linked functional elements. Interestingly, it also suggests that 412 confidence intervals identified in other intercross experiments, especially those that share 413 a parental strain, can be productively evaluated under *a priori* epistatic hypotheses, which 414 may also ease issues related to multiple testing. On this account, it is also striking that 415 the epistatic network identified in Stylianou et al. (2006) as Chr4-Adip11 is centered on a 416 region also identified here as contributing to the epistatic architecture of fatpad weight. 417 The results of composite interval mapping also suggest that adjacent slQTL and 418 epiQTL impact the mapping process. For example, there is a dramatic and unexpected 419 increase in significance (nearly 3 orders of magnitude) for the additive slQTL peak at 420 134.82 Mb on chromosome 1 when composite interval mapping was applied (Figure 1A). 421 While this is the most dramatic example, such effects were repeatedly observed 422 (Supplementary Figure 1) and on chromosomes 7 and 9 this resulted in the identification 423 of two novel loci. Interestingly, this suggests that adjacent functional variants with 424 opposite effects were fixed in the original parental lines during their production. Indeed, 425 inspection of the regression coefficients from the full linear model shows that the 426 epistatic peak closest to the slQTL signal at 134.82 Mb on chromosome 1 (DD with 427 12:73.42-89.12 Mb) and the marginal signal itself share a positive sign. However, the 428 two slightly centromeric interactions involving the additive value on chromosome 1 (AA 429 with 13:0-24.24 Mb and AD with 6:133.92-142.67 Mb) are both negative. Conditioning 430 on these adjacent markers is indeed expected to enhance the signal of the neighboring

additive effect, consistent with our observations. Thus, comparing the results of
conventional single-locus mapping model and composite interval mapping may be an
indirect means of identifying neighboring functional variants. Further mapping in later
generations of this Advanced Intercross will provide a great deal of additional
information on the sign, magnitude and physiological basis for these observed effects as
recombination is expected to further separate their statistical signatures.

437 **Conclusions:** The application of multiple mapping approaches, including an 438 epistatic model, is a vital strategy for characterizing complex genetic architectures. 439 Contrary to suggestions based on human GWAS findings, we found substantial numbers 440 of pair-wise epistatic interactions involving many more loci than show single locus 441 effects that account for an important portion of trait variation. This is likely due to the 442 genetic structure of our experimental population where allele frequencies are 443 intermediate; there are no rare alleles in our mapping system. This is critical since 444 epistasis is known to produce predominantly additive and dominance variance when 445 relatively rare alleles are involved (Cheverud and Routman, 1995; Cheverud, 2000). 446 Here, the use of a combination of techniques was further enhanced by the 447 improved genetic resolution offered by AI lines. While single locus scans remain the 448 most tractable, pair-wise epistatic relationships can now be dissected in great detail as 449 well and the identification of candidate loci for such interactions is possible. This is 450 especially true for characters for which a large body of literature exists describing the 451 mechanistic relationships among candidate genes and related pathologies. In such cases, 452 incorporating *a priori* information regarding functional interactions can be used to help 453 focus epistatic mapping studies and both ease the difficulties associated with multiple

454	comparisons and facilitate the physiological interpretation of statistical results. It is an
455	exciting prospect that even more fine-scale mapping of these loci will be possible in later
456	generations of the LG,SM AI line. Undoubtedly future analyses, coupled with the
457	incorporation of sequence information from the parental lines, will aid in further refining
458	the physiological hypotheses presented here for fatpad variation and greatly contribute to
459	our understanding of the statistical signatures of complex genetic architectures.
460	
461	ACKNOWLEDGEMENTS
462	The authors wish to acknowledge G. L. Fawcett and C. A. Lambert for offering
463	insightful comments and suggestions on earlier drafts of this manuscript. This work was
464	supported by a grant from the National Institutes of Health (DK-055736) and a Doctoral
465	Dissertation Improvement Grant from the National Science Foundation (DEB-0608352).
466	

466	LITERATURE CITED
467	Bartlett, M. S. and J. B. S. Haldane, 1935 The theory of inbreeding with forced
468	heterozygosity. J. Genet. 31: 327-340.
469	Bera, T. K., X-F Liu, M. Yamada, O. Gavrilova, E. Mezey, L. Tessarollo, M. Anver, Y.
470	Hahn, B. Lee, and I. Pastan, 2008 A model for obesity and gigantism due to
471	disruption of the Ankrd26 gene. PNAS. 105(1): 270-257.
472	Brachya, G., C. Yanay and M. Linial, 2006 Synaptic proteins as multi-sensor devises of
473	neurotransmission. BMC Neuroscience. 7(Suppl 1): S4.
474	Brockmann, G. A., C. S. Haley, U. Renne, S. A. Knott, and M. Schwerin, 1998
475	Quantitative trait loci affecting body weight and fatness from a mouse line
476	selected for extreme high growth. Genetics. 150: 369-381.
477	Brockmann, G. A., J. Kratzsch, C. S. Haley, U. Renne, M. Schwerin, and S. Karle, 2000
478	Single QTL effects, epistasis, and pleiotropy account for two-thirds of the
479	phenotypic F(2) variance of growth and obesity in DU6i x DBA/2 mice. Genome
480	Res. 10(12): 1941-1957.
481	Bult, C. J., J. T. Eppig, J. A. Kadin, J. E. Richardson, J.A. Blake and the members of the
482	Mouse Genome Database Group, 2008 The Mouse Genome Database (MGD):
483	mouse biology and model systems. Nucleic Acids Res. 36: D724-728.
484	Cao, Y., 2007 Angiogenesis modulates adipogenesis and obesity. J. Clin. Invest. 117(9):
485	2362-2368.
486	Chai, C., 1956a Analysis of quantitative inheritance of body size in mice I. Hybridization
487	and maternal influence. Genetics. 41: 157-164.

- 488 Chai, C., 1956b Analysis of quantitative inheritance of body size in mice. II. Gene action
 489 and segregation. Genetics. 41: 165-178.
- 490 Chehab, F. F., 2008 Minireview: Obesity and lipodystrophy Where do the circles
- 491 intersect? Endocrinology. **149:** 925-934.
- 492 Cheverud, J. M., 2000 Detecting epistasis among quantitative trait loci. Pp. 58-81 in J. B.
- Wolf, E. D. Brodie, and M. J. Wade, eds. Epistasis and the Evolutionary Process.
 Oxford Univ. Press, Oxford.
- Cheverud, J. M. and E. J. Routman, 1995 Epistasis and its contribution to genetic
 variance components. Genetics 139:1455-1461.
- 497 Cheverud, J. M., G. L. Fawcett, J. P. Jarvis, E. A. Norgard, M. Pavlicev, L. S. Pletscher,
- K. S. Plonsky, H. Ye, G. I. Bell, and C. F. Semenkovich, 2010 Calpain-10 is a
 component of the obesity-related quantitative trait locus *Adip1*. J. Lipid Res. 51:
 907-913.
- 501 Cheverud, J. M., T. H. Ehrich, J. P. Kenney, L. S. Pletscher, and C. F. Semenkovich,
- 502 2004 Genetic evidence for discordance between obesity and diabetes-related
- 503 traits in the LGXSM recombinant inbred mouse strains. Diabetes. **53**: 2700-2708.
- 504 Cheverud, J. M., T. H. Ehrich, T. Hrbek, J. P. Kenney, L. S. Pletscher, and C. F.
- 505 Semenkovich, 2004 Quantitative trait loci for obesity and diabetes-related traits 506 and their dietary responses to high fat feeding in the LGXSM recombinant inbred 507 mouse strains. Diabetes. **53**: 3328-3336.
- 508 Cheverud, J. M., L. S. Pletscher, T. T. Vaughn, and B. Marshall, 1999 Differential
- 509 response to dietary fat in large (LG/J) and small (SM/J) inbred mouse strains.
- 510 Physiol. Gen. 1: 33-39.

511	Cheverud, J. M., E. J. Routman, F. A. M. Duarte, B. van Swinderen, K. Cothran and C.
512	Perel, 1996 Quantitative trait loci for murine growth. Genetics. 142: 1305-1319.
513	Cheverud, J. M., T. T. Vaughn, L. S. Pletscher, A. C. Peripato, E. S. Adams, C. F.
514	Erikson, K. J. King-Ellison, 2001 Genetic architecture of adiposity in the cross of
515	LG/J and SM/J inbred mice. Mam. Gen. 12: 3-12.
516	Christians, J. K., A. Hoeflich, and P. D. Keightley, 2006 PAPPA2, an enzyme that
517	cleaves an insulin-like growth-factor-binding protein, is a candidate gene for a
518	quantitative trait locus affecting body size in mice. Genetics. 173: 1547-1553.
519	Corva, P. M., S. Horvat, and J. F. Medrano, 2001 Quantitative trait loci affecting growth
520	in high growth (hg) mice. Mamm Genome. 12(4): 284-290.
521	Darvasi, A. and M. Soller, 1995 Advanced intercross lines, an experimental population
522	for fine genetic mapping. Genetics. 141: 1199-1207.
523	de Leeuw van Weenen, J. E., L. Hu, K. Jansen0Van Zelm, M. G. de Vries, J. T. Tamsma,
524	J. A. Romijn, H. Pijl, 2009 Four weeks high fat feeding induces insulin resistance
525	without affecting dopamine release or gene expression patterns in the
526	hypothalamus of C57Bl6 mice. Brain Res. 1250: 141-148.
527	Doria, A., M. Patti and C. Kahn, 2008 The emerging genetic architecture of type 2
528	diabetes. Cell Metabolism. 8: 186-200.
529	Duerr, R. H., K. D. Taylor, S. R. Brant, J. D. Rioux, M. S. Silverberg, M. J. Daly, A. H.
530	Steinhart, C. Abraham, M. Regueiro, A. Griffiths, T. Dassopoulos, A. Bitton, H.
531	Yang, S. Targan, L. W. Datta, E. O. Kistner, L. P. Schumm, A. T. Lee, P. K.
532	Gregersen, M. M. Barmada, J. I. Rotter, D. L. Nicolae, J. H. Cho1, 2006 A

533	Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel
534	Disease Gene. Science. 314: 1461-1463.
535	Elbatarny, H. S., S. J. Netherton, J. D. Ovens, A. V. Ferguson, and D. H. Maurice, 2007
536	Adiponectin, ghrelin, and leptin differentially influence human platelet and
537	human vascular endothelial cell functions: Implication in obesity-associated
538	cardiovascular diseases. Euro. J. Pharma. 558: 7-13.
539	Fawcett, G. L., C. C. Roseman, J. P. Jarvis, B. Wang, J. B. Wolf, and J. M. Cheverud,
540	2008 Genetic architecture of adiposity and organ weight using combined
541	generation QTL analysis. Obesity. 16: 1861-1868.
542	Fawcett, G. L., J. P. Jarvis, C. C. Roseman, B. Wang, J. B. Wolf, and J. M. Cheverud
543	2010 Fine-mapping of obesity-related quantitative trait loci in an $F_{9/10}$ advanced
544	intercross line. Obesity. 18(7):1383-1392.
545	Fenske, T. S., C. McMahon, D. Edwin, J. C. Jarvis, J. M. Cheverud, M. Minn, V.
546	Mathews, M. A. Bogue, M. A. Province, H. L. McLeod, and T. A. Graubert, 2006
547	Identification of Candidate Alkylator-Induced Cancer Susceptibility Genes by
548	Whole Genome Scanning in Mice. Cancer Res. 66: 5029-5038.
549	Gabory, A., M-A Ripoche, A. Le Digarcher, F. Watrin, A. Ziyyat, T. Forne, H. Jammes,
550	J. F. X. Ainscough, M. A. Surani, L. J.ournot, and L. Dandolo, 2009 H19 acts sa
551	a trans regulator of the imprinted gene network controlling growth in mice.
552	Development. 136: 3413-3421.
553	Gardner, M., J. Bertranpetit, and D. Comas, 2008 Worldwide genetic variation in
554	dopamine and serotonin pathway genes: Implications for association studies. Am.
555	J. Med. Genet. B. 147B(7): 1070-1075.

- Gat-Yablonski, G. and M. Phillip, 2008 Leptin and regulation of linear growth. Curr. Op.
 Clin. Nut. Met. Care. 11: 303-308.
- Haldane, J. B. S. and C. H. Waddington, 1931 Inbreeding and Linkage. Genetics. 16:
 357-374.
- Haley, C. S. and S. A. Knott, 1992 A simple regression method for mapping quantitative
 trait loci in line crosses using flanking markers. Heredity. 69: 315-324.
- 562 Hanlon P., W. A. Lorenz, Z. Shao, J. M. Harper, A. T. Galecki, R. A. Miller and D. T.
- Burke, 2006 Three-locus and four-locus QTL interactions influence mouse
 insulin-like growth factor-I. Physiol. Genomics. 26:46-54.
- Hanson, W. D., 1959a The theoretical distribution of lengths of parental gene blocks in
 the gametes of an F₁ individual. Genetics. 44: 197-209.
- 567 Hanson, W. D., 1959b Theoretical distribution of the initial linkage block lengths intact
- in the gametes of a population intermated for n generations. Genetics. 44: 839-846.
- 570 Hanson, W. D., 1959c Early generation analysis of lengths of heterozygous chromosome
- 571 segments around a locus held heterozygous with backcrossing or selfing.
- 572 Genetics. **44:** 833-837.
- 573 Hanson, W. D., 1959d The breakup of initial linkage blocks under selected mating
 574 systems. Genetics. 44: 857-868.
- 575 Hirai, S., M. Yamanaka, H. Kawachi, T. Matsui, and H. Yano, 2005 Acitin A inhibits
 576 differentiation of 3T3-L1 preadipocyte. Mol. and Cell. Endo. 232: 21-26.
- 577 Hoffmann, A-C, R. Mori, D. Vallbohmer, J. Brabender, E. Klein, U. Drebber, S. E.
- 578 Baldus, J. Cooc, M. Azuma, R. Metzger, A. H. Hoelscher, K. D. Danenberg, K. L.

579	Prenzel, and P. V. Danenberg, 2008 High expression of <i>HIF1a</i> is a predictor of
580	clinical outcome in patients with pancreatic ductal adenocarcinomas and
581	correlated to PDGFA, VEGF, and bFGF. Neoplasia. 10(7): 674–679.
582	Horvat, S., L. Bunger, V. M. Falconer, P. Mackay, A. Law, G. Bulfield, and P. D.
583	Keightley, 2000 Mapping of obesity QTLs in a cross between mouse lines
584	divergently selected on fat content. Mamm Genome. 11(1): 2-7.
585	Ichihara, S. and Y. Yamada, 2008 Genetic factors for human obesity. Cellular and
586	Molecular Life Sciences. 65: 1086-1098.
587	Ishimori, N., R. Li, P. M. Kelmenson, R. Korstanje, K. A. Walsh, G. A. Churchill, K.
588	Forsman-Semb, and B. Paigen, 2004 Quantitative trait loci that determine plasma
589	lipids and obesity in C57BL/6J and 129S1/SvImJ inbred mice. J Lipid Res. 45(9):
590	1624-1632.
591	Jannink, JL., M. C. A. M. Bink, and R. C. Jansen, 2001 Using complex plant pedigrees
592	to map valuable genes. Trends in Plant Science. 6: 337-342.
593	Jarvis, J. P., and J. M. Cheverud, 2009 Epistatis and the evolutionary dynamics of
594	measured genotypic values during simulated serial bottlenecks. J. Evol. Biol. 22:
595	1658-1668.
596	Kahn, Z., S. Vijayakumar, T. Villanueva de la Torre, S. Rotolo, and A. Bafico, 2007
597	Analysis of endogenous LRP6 function reveals a novel feedback mechanism by
598	which <i>Wnt</i> negatively regulates its receptor. Mol. Cell. Biol. 27: 7291-7301.
599	Kamei, Y., H. Ohizumi, Y. Fujitani, T. Nemoto, T. Tanaka, N. Takahashi, T. Kawada, M.
600	Miyoshi, O. Ezaki, A Kakizuka, 2003 PPARγ coactivator 1β/ERR ligand 1 is an

- 601 ERR protein ligand, whose expression induces a high-energy expenditure and
 602 antagonizes obesity. PNAS. 100: 12378-12383.
- Keightley, P. D., K. H. Morris, A. Ishikawa, V. M. Falconer, F. Oliver, 1998 Test of
 candidate gene--quantitative trait locus association applied to fatness in mice.
- 605 Heredity. **81(Pt 6):** 630-637.
- Keightley, P. D., T. Hardge, L. May, and G. Bulfield, 1996 A genetic map of
- quantitative trait loci for body weight in the mouse. Genetics. **142**: 227-235.
- 608 Kenney-Hunt, J. P., B. Wang, E. A. Norgard, G. Fawcett, D. Falk, L. S. Pletscher, J. P.
- Jarvis, C. Roseman, J. Wolf, and J. M. Cheverud, 2008 Pleiotropic Patterns of
 Quantitative Trait Loci for 70 Murine Skeletal Traits. Genetics. 178: 2275-2288.
- 611 Kim, J. H., S. Sen, C. S. Avery, E. Simpson, P. Chandler, P. M. Nishina, G. A. Churchill,
- and J. K. Naggert, 2001 Genetic analysis of a new mouse model for non-insulindependent diabetes. Genomics. 74(3): 273-286.
- 614 Klein, R. J., C. Zeiss, E. Y. Chew, J-Y Tsai, R. S. Sackler, C. Haynes, A. K. Henning, J.
- 615 P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L. Ferris, J. Ott, C.
- Barnstable, J. Hoh, 2005 Complement Factor H Polymorphism in Age-Related
 Macular Degeneration. Science. **308:** 385-389.
- 618 Kramer, M. G., T. T. Vaughn, L. S. Pletscher, K. King-Ellison, E. Adams, C. Erikson,
- and James M. Cheverud, 1998 Genetic variation in body weight growth and
- 620 composition in the intercross of Large (LG/J) and Small (SM/J) inbred strains of
- 621 mice. Genet. Mol. Biol. **21**: 211-218.

622	Lander, E. S. and D. Botstein, 1989 Mapping mendelian factors underlying quantitative
623	traits using RF.LP linkage maps [published erratum appears in Genetics 1994
624	136: 705]. Genetics 121: 185-199.
625	Lin, Y., X. Zhu, F. L. McIntee, H. Xiao, J. Zhang, M. Fu, and Y E. Chen, 2004
626	Interferon Regulatory Factor-1 mediates PPARy-Induced apoptosis in vascular
627	smooth muscle cells. Arterioscler Thromb. Vasc. Biol. 24: 257-263.
628	Mani, A., J. Radhakrishnan, H. Wang, A. Mani, M-A Mani, C. Nelson-Williams, K. S.
629	Carew, S. Mane, H. Najmabadi, D. Wu, R. P Lifton, 2007 LRP6 mutation in a
630	family with early coronary disease and metabolic risk factors. Science.
631	315(5816):1278-1282.
632	Maya-Monteiro, C. M., P. E. Almeida, H. D'Avila, A. S. Martins, A. P. Rezende, H.
633	Castro-Faria-Neto, and P. T. Bozza, 2008 Leptin induces macrophage lipid body
634	formation by a phosphatidylinositol 3-kinase and mammalian target of
635	rapamycin-dependent mechanism. J. of Biol. Chem. 283: 2203-2210.
636	Mehrabian, M., P. Z. Wen, J. Fisler, R. C. Davis, and A. J. Lusis, 1998 Genetic loci
637	controling body fat, lipoprotein metabolism, and insulin levels in a multifactorial
638	mouse model. J Clin Invest. 101(11): 2485-2496.
639	Norgard, E. A., J. P. Jarvis, C. C. Roseman, T. J. Maxwell, J. P. Kenney-Hunt, K. E.
640	Samocha, L. S. Pletscher, B. Wang, G. L. Fawcett, C. J. Leatherwood, J. B. Wolf
641	and J. M. Cheverud, 2009 Replication of long bone length QTL in the F_9 - F_{10}
642	LG,SM Advanced Intercross. Mammalian Genome 20: 224-235.
643	Papst, C., M. Bohn, H. F. Utz, A. E. Melchinger, D. Klein, J. Eder, 2004 QTL mapping
644	for European corn borer resistance (Ostrinia nubilalis Hb.), agronomic and forage

645	quality traits of testcross progenies in early-maturing European maize (Zea mays
646	L.) germplasm. Theoretical and Applied Genetics 108: 1545-1554.
647	Phillips, P. C., 2008 Epistasis-the essential role of gene interactions in the structure and
648	evolution of genetic systems. Nat. Rev. Genet. 9(11): 855-867.
649	R Development Core Team, 2009 R: A language and environment for statistical
650	computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
651	900051-07-0, URL http://www.R-project.org.
652	Rockman, M. V. and L. Kruglyak, 2008 Breeding designs for recombinant inbred
653	advanced intercross lines. Genetics. 179: 1069-1078.
654	Rosen, C. J., C. Ackert-Bicknell, W. G. Beamer, T. Nelson, M. Adamo, P. Cohen, M. L.
655	Bouxsein, and M. C. Horowitz, 2005 Allelic differences in a quantitative trait
656	locus affecting insulin-like growth factor-I impact skeletal acquisition and body
657	composition. Pediatr Nephrol. 20(3): 255-260.
658	Silver, L. M., 1995 Mouse Genetics: Concepts and Applications. Oxford University
659	Press, New York.
660	Sladek, R., G. Rocheleau, J. Rung, C. Dina, L. Shen. D. Serre, P. Boutin, D. Vincent, A.
661	Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T. J. Hudson, A.
662	Montpetit, A. V. Pshezhetsky, M. Prentki, B. I. Posner, D. J. Balding, D. Meyre,
663	C. Polychronakos, and P. Froguel, 2007 A genome-wide association study
664	identifies novel risk loci for type 2 diabetes. Nature. 445: 881-885.
665	Smith Richards, B. K., B. N. Belton, A. C. Poole, J. J. Mancuso, G. A. Churchill, R. Li, J.
666	Volaufova, A. Zuberi, and B. York, 2002 QTL analysis of self-selected

667	macronutrient diet intake: fat, carbohydrate, and total kilocalories. Physiol
668	Genomics. 11(3): 205-217.
669	Sokal, R. S. and F. J. Rohlf, 1995 <i>Biometry</i> . W. H. Freeman and Company, New York.
670	Stylianou, I., M., R. Korstanje, R. Li, S. Sheehan, B. Paigen, G. A. Churchill, 2006
671	Quantitative trait locus analysis for obesity reveals multiple networks of
672	interacting loci. Mammalian Genome 17: 22-36.
673	Taylor B. A., C. Wnek, D. Schroeder, and S. J. Phillips, 2001 Multiple obesity QTLs
674	identified in an intercross between the NZO (New Zealand obese) and the SM
675	(small) mouse strains. Mamm Genome. 12(2): 95-103.
676	Taylor, B. A., and S. J. Phillips, 1996 Detection of obesity QTLs on mouse
677	chromosomes 1 and 7 by selective DNA pooling. Genomics. 34(3): 389-398.
678	Togawa, K., M. Moritani, H. Yaguchi, and M. Itakura, 2006 Multidimensional genome
679	scans identify the combinations of genetic loci linked to diabetes-related
680	phenotypes in mice. Hum Mol Genet. 15(1): 113-128.
681	Tontonoz, P., E. Hu, R. A. Graves, A. I. Budavari, and B. M. Spiegelman, 1994 mPPAR
682	gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes and
683	Development 8: 1224-1234.
684	Tropea, A., F. Tiberi, F. Minici, M. Orlando, M. F. Gangale, F. Romani, F. Miceli, S.
685	Catino, S. Mancuso, M. Sangjuinetti, A. Lansone, and R. Apa, 2007 Ghrelin
686	affects the release of luteolytic and luteotropic factors in human luteal cells. The
687	Journal of Clinical Endocrinology & Metabolism 92(8): 3239-3245.
688	Uchida, T., T. Nakamura, N. Hashimoto, T. Matsuda, K. Kotani, H. Sakaue, Y. Kido, Y.
689	Hayashi, K. I. Nakayama, M. F. White, and M. Kasuga, 2005 Deletion of

690	Cdkn1b ameliorates hyperglycemia by maintaining compensatory
691	hyperinsulinemia in diabetic mice. Nature Medicine. 11(2): 175-182.
692	Vaughn, T. T., L. S. Pletscher, A. Peripato, K. King-Ellison, E. Adams, C. Erikson, and J.
693	M. Cheverud, 1999 Mapping quantitative trait loci for murine growth: a closer
694	look at genetic architecture. Genetical Research. 74: 313-22.
695	Warden, C. H., J. S. Fisler, S. M. Shoemaker, P. Z. Wen, K. L. Svenson, M. J. Pace, and
696	A. J. Lusis, 1995 Identification of four chromosomal loci determining obesity in
697	a multifactorial mouse model. J Clin Invest. 95(4): 1545-1552.
698	Watanabe, S., R. Yaginuma, K. Ikejima, and A. Miyazaki, 2008 Liver diseases and
699	metabolic syndrome. J. Gastroenterol. 43: 509-518.
700	Werner, S., C. Alzheimer, 2006 Roles of activin in tissue repair, fibrosis and
701	inflammatory disease. Cytokine & Growth Factor Reviews. 17(3): 157-171.
702	Wentzell, A. M., H. C. Rowe, B. G. Hansen, C. Ticconi, B. A. Halkier, and D. J.
703	Kliebensein, 2007 Linking Metabolic QTLs with Network and cis-eQTLs
704	Controlling Biosynthetic Pathways. PLoS Genetics 3: 1687-1701.
705	West, D. B., J. Goudey-Lefevre, B. York, G. E. Truett, 1994 Dietary obesity linked to
706	genetic loci on chromosomes 9 and 15 in a polygenic mouse model. J Clin Invest.
707	94(4): 1410-1416.
708	Wilson, R. H., T. J. Morgan and T. F. C. Mackay, 2006 High-resolution mapping of
709	quantitative trait loci affecting increased life span in Drosophila melanogaster.
710	Genetics. 173: 1455-1463.
711	Woodruff, T. K. and J. P. Mather, 1995 Inhibin, Activin and the female reproductive
712	axis. Annual Review of Physiology. 57: 219-244.

713	Yamauchi, T., Y. Nio, T. Maki, M. Kobayashi, T. Takazawa, M. Iwabu, M. Okada-
714	Iwabu, S. Kawamoto, N. Kubota, T. Kubota, Y. Ito, J. Kamon, A. Tsuchida, K.
715	Kumangai, H. Konzono, Y. Hada, H. Ogata, K. Tokuyama, M. Tsunoda, T. Ide,
716	K. Murakami, M. Awazawa, I. Takamoto, P. Froguel, K. Hara, K. Tobe, R.
717	Nagai, K. Ueki, and T. Kadowaki, 2007 Targeted disruption of AdipoR1 and
718	AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature
719	Medicine. 13: 332-339.
720	Yi, N., D. K. Zinniel, K. Kim, E. J. Eisen, A. Bartolucci, D. B. Allison, and D. Pomp,
721	2006 Bayesian analyses of multiple epistatic QTL models for body weight and
722	body composition in mice. Genet Res. 87(1): 45-60.
723	Yi, N., A. Diament, S. Chiu, K. Kim, D. B. Allison, J. S. Fisler, and C. H. Warden, 2004
724	Characterization of epistasis influencing complex spontaneous obesity in the BSB
725	model. Genetics. 167(1): 399-409.
726	Zeggini, E., L. J. Scott, R. Saxena, B. F. Voight, J. L. Marchini, T. Hu, P. IW de Bakker,
727	G. R. Abecasis, P. Almgren, G. Andersen, K. Ardlie, K. B. Boström, R. N.
728	Bergman, L. L. Bonnycastle, K. Borch-Johnsen, N. P. Burtt, H. Chen, P. S.
729	Chines, M. J. Daly, P. Deodhar, C. Ding, A. S. F. Doney, W. L. Duren, K. S.
730	Elliott, M. R. Erdos, T. M. Frayling, R. M. Freathy, L. Gianniny, H. Grallert, N.
731	Grarup, C. J. Groves, C. Guiducci, T. Hansen, C. Herder, G. A. Hitman, T. E.
732	Hughes, B. Isomaa, A. U. Jackson, T. Jørgensen, A. Kong, K. Kubalanza, F. G.
733	Kuruvilla, J. Kuusisto, C. Langenberg, H. Lango, T. Lauritzen, Y. Li, C. M.
734	Lindgren, V. Lyssenko, A. F. Marvelle, C. Meisinger, K. Midthjell, K. L. Mohlke,
735	M. A. Morken, A. D. Morris, N. Narisu, P. Nilsson, K. R. Owen, C. N. A. Palmer,

736	F. Payne, J. R. B. Perry, E. Pettersen, C. Platou, I. Prokopenko, L. Qi, L Qin, N.
737	W. Rayner, M. Rees, J. J. Roix, A. Sandbæk, B. Shields, M. Sjögren, V.
738	Steinthorsdottir, H. M. Stringham, A. J. Swift, G. Thorleifsson, U.
739	Thorsteinsdottir, N. J. Timpson, T. Tuomi, J. Tuomilehto, M. Walker, R. M.
740	Watanabe, M. N. Weedon, C. J. Willer, Wellcome Trust Case Control
741	Consortium, T. Illig, K. Hveem, F. B. Hu, M. Laakso, K. Stefansson, O. Pedersen,
742	N. J. Wareham, I. Barroso, A. T. Hattersley, F. S. Collins, L. Groop, M. I.
743	McCarthy, M. Boehnke, and D. Altshuler, 2008 Meta-analysis of genome-wide
744	association data and large-scale replication identifies additional susceptibility loci
745	for type 2 diabetes. Nat Genet. 40(5): 638–645.
746	Zeng, Z. B., 1994 Precision mapping of quantitative trait loci. Genetics. 136: 1457-68.
747	Ziemke, F. and C. S. Mantzoros, 2010 Adiponectin in insulin resistance: lessons from
748	translational research. Am. J. Clin. Nutr. 91(Suppl): 258S-261S.
749	

749	TABLE 1: Results from the full linear model of the epistatic network underlying murine
750	reproductive fatpad weight in the LG,SM AI line. Chromosome, confidence intervals (Mb), peak
751	locations (Mb), peak LPR scores, nearest SNP to the peak, effect type threshold and threshold
752	value are all given for each term. The appropriate references for any a priori hypotheses are
753	listed along with positional candidate loci for both sIQTL and epiQTL. Bold terms are nominally
754	significant (p > 0.05) when additive and dominance effects for all interactions are included in the
755	model. References: ¹ Cheverud et al. 2001; ² Fawcett et al. 2008; ³ Taylor and Phillips 1996; ⁴ Taylor
756	et al. 2001; ⁵ Cheverud et al. 2004; ⁶ Yi et al. 2006; ⁷ Ishimori et al. 2004; ⁸ Fawcett et al. 2010;
757	⁹ Stylianou et al. 2006; ¹⁰ Togawa et al. 2006; ¹¹ Brockmann et al. 2000; ¹² Warden et al. 1995;
758	¹³ Keightley et al. 1998; ¹⁴ Rosen et al. 2005; ¹⁵ Kim et al. 2001; ¹⁶ Yi et al. 2004; ¹⁷ Corva et al. 2001;
759	¹⁸ West et al. 1994; ¹⁹ Horvat et al. 2000; ²⁰ Smith Richards et al. 2002; ²¹ Mehrabian et al. 1998.
760	
761	
762	FIGURE 1: Mapping results of significant terms from the full model of reproductive fatpad weight
763	in the LG,SM AI line for chromosomes 1 (A) and 13 (B). Results from the single-locus model are
764	given as connected grey dots, composite interval mapping as smooth black lines and epistatic
765	interactions by other connected shapes. Confidence intervals from previous analyses are

766 represented by horizontal bars below the QTL plot.

Chr 1	CI 1 Begin (Mb)	CI 1 End (Mb)	Peak 1 (Mb)	Chr 2	CI 2 Begin (Mb)	CI 2 End (Mb)	Peak 2 (Mb)	slQTL LPR	Peak SNP 1	Peak SNP 2	Epistatic LPR	Effect(s)	Threshold Type	Threshold	Reported Adipose QTL in CI(s)	QTL Reference(s)	Candidates (CI 1)	Candidates (CI 2)
1	16.40	21.28	20.15	NA	NA	NA	NA	4.26	rs6334092	NA	NA	A,D	Pointwise	3.32	Adip1; Obq2	1;2;3	Pkhd1	NA
1	65.79	74.08	70.77	NA	NA	NA	NA	4.76	rs6323094	NA	NA	Α	Pointwise	6.60	Obq7	4	Vwc2l; Fn1	NA
1	118.37	138.01	134.82	NA	NA	NA	NA	9.17	gnf01.132.831	NA	NA	Α	Pointwise	3.32	Obsty1; Gwth1; Obq17	5;6;7	Pik3c2b	NA
3	20.54	27.82	22.51	NA	NA	NA	NA	5.56	rs13477017	NA	NA	A	Pointwise	3.32	None	None	Nlgn1; Ghsr	NA
4	9.71	11.92	10.83	NA	NA	NA	NA	4.78	rs13477558	NA	NA	D	Pointwise	3.32	Unnamed RI QTL	5	Plekhf2	NA
4	78.28	90.30	79.46	NA	NA	NA	NA	11.87	CEL-4-78089985	NA	NA	A	Pointwise	3.32	Adip11; Adip24; Adip11a	2;8;9	Tyrp1	NA
6	114.73	121.97	117.73	NA	NA	NA	NA	5.01	mCV23042866	NA	NA	D	Pointwise	3.32	Adip2; Igf1s11	1;14	Adipor2; Ankrd26; Pparg	NA
6	133.92	142.67	134.20	NA	NA	NA	NA	8.89	rs13479053	NA	NA	Α	Pointwise	3.32	Adip2	1	Lrp6; Grin2b; Cdkn1b	NA
7	30.18	44.44	37.21	NA	NA	NA	NA	4.08	rs6217275	NA	NA	D	Pointwise	3.32	Adip3; Adip3A; Adip3Ab	1;2;8	Tshz3; Plekhf1	NA
7	59.83	77.73	63.51	NA	NA	NA	NA	6.85	rs3717293	NA	NA	A,D	Pointwise	3.32	Tabw; Adip3Ad; Adip25; Obq1	15;8;3	Nipa1; Nipa2; Gabrg3; Gabra5; Gabrb3	NA
7	132.03	143.20	135.24	NA	NA	NA	NA	6.38	CEL-7-116160192	NA	NA	A	New slQTL chr7	6.36	Bsbob2	16	Trim72	NA
8	64.98	90.95	84.79	NA	NA	NA	NA	4.76	rs13479860	NA	NA	Α	Pointwise	3.32	Adip4	1;2	1115	NA
9	61.70	67.72	65.39	NA	NA	NA	NA	6.98	rs13480247	NA	NA	Α	New slQTL chr9	6.38	None	None	Mtfmt	NA
9	118.30	125.00	118.88	NA	NA	NA	NA	9.64	rs6316481	NA	NA	Α	Pointwise	3.32	Adip5; Adip5a; Adip5b; Adip5c; Obq18	1;2;8;7	Acvr2b	NA
12	60.62	67.43	64.06	NA	NA	NA	NA	5.24	mCV24690992	NA	NA	Α	Pointwise	3.32	Adip6; Adip16; Fob2	2;9;19	Lrfn5	NA
13	40.74	55.35	53.54	NA	NA	NA	NA	4.90	rs3699522	NA	NA	Α	Pointwise	3.32	Adip7; Adip18; Adip18a; Pfat3	1;2;8;13	Cplx2; Drd1a	NA
18	24.19	56.21	48.82	NA	NA	NA	NA	4.83	rs3684561	NA	NA	Α	Pointwise	3.32	Adip8; Adip8a; Adip8b; Kcal1; Mnif2	1;8;20	Sema6a; Hsd17b4	NA
18	58.77	80.76	63.84	NA	NA	NA	NA	12.31	rs13483398	NA	NA	Α	Pointwise	3.32	Adip8; Adip8c; Adip8d; Obsty4	1;2;8;5	Adrb2; Htr4	NA
1	42.41	52.71	51.38	9	68.10	95.10	77.25	NA	rs13475863	rs13480288	5.52	DD	QTL x QTL epi	3.44	Adip1; Obq7; Adip5; Mob8	1;4;21	Gls	Gele
1	118.37	138.01	128.52	6	133.92	142.67	141.48	NA	rs6228473	rs8268650	4.95	AD	QTL x QTL epi	3.44	Obsty1; Gwth1; Obq17; Adip2	1;5;6;7	Gpr39	Pde3a
1	118.37	138.01	128.84	12	73.42	89.12	75.11	NA	rs13476100	rs3687032	4.64	DD	QTL x QTL epi	3.44	Obsty1; Gwth1; Obq17; Adip6	1;5;6;7	Gpr39	Hif1a
1	174.21	189.05	186.63	13	0.00	24.24	23.48	NA	mCV24555989	gnf13.020.621	10.27	AA	QTL x chr1 epi	5.25	Obq9	4	Hlx	Abt1
4	30.53	39.16	36.58	9	118.30	125.00	123.70	NA	rs13477649	rs8241505	6.03	DD	QTL x QTL epi	3.44	Unnamed RI QTL; Dob2; Obq18	5;7;18	Cga	Slc6a20a; Slc6a20b
4	125.68	139.92	130.91	7	132.03	143.20	139.70	NA	rs3673061	rs8236684	4.93	AD	QTL x QTL epi	3.44	Adip12; Qbis1; Afpq2; Adip3	1;9;10;11	Ptpru	Oat
4	143.52	154.77	152.94	7	132.03	143.20	141.88	NA	rs6378384	rs3719258	4.69	AD	QTL x QTL epi	3.44	Adip12; Adip3	1;9	Ajap1	Adam12
6	33.46	46.84	37.64	9	118.30	125.00	123.70	NA	rs13478717	rs8241505	5.11	DA	QTL x chr6 epi	5.09	Dob2; Obq18	7;18	Trim24	Ccr9
6	53.92	71.82	54.18	7	102.32	108.47	105.10	NA	rs13478762	UT-7-90.803899	5.13	AA	QTL x chr7 epi	4.96	Adip2; Obq13	1;4	Crhr2; Ghrhr	Capn5
7	132.03	143.20	137.17	8	42.26	57.10	50.65	NA	rs8236684	rs13479769	5.08	AA	QTL x chr8 epi	4.73	Bsbob2	16	Fgfr2	Ing2
8	124.83	129.12	127.97	9	20.24	39.76	23.57	NA	rs6300613	rs13480112	5.57	AD	QTL x chr9 epi	4.99	Obsty2	5	Disc1	Npsr1
9	20.24	39.76	31.31	12	108.99	120.28	111.04	NA	CEL-9-29909656	CEL-12-104545022	5.36	AA,DD	QTL x chr9 epi	4.99	Carfhg2	17	Kcnj5	Dlk1; Meg3; Rtl1
9	104.05	118.18	109.62	1	191.98	NA	193.61	NA	rs3723953	rs13476308	7.78	AA	QTL x chr1 epi	5.99	Adip5;Dob2	1;18	Fbxw cluster	Nek2
12	108.99	120.28	113.11	1	191.98	NA	195.79	NA	rs13481651	rs13476312	6.06	DA	QTL x chr1 epi	5.25	Adip6; Bsbob4; Mob3	1;2;16;12	Traf3	Hsd11b1
13	0.00	24.24	14.85	1	118.37	138.01	119.02	NA	rs13481702	rs3694226	5.96	AA	QTL x chr1 epi	5.25	Adip7	1	Inhba	Inhbb
13	0.00	24.24	17.38	9	68.10	95.10	82.84	NA	rs3678616	rs13480312	4.54	AA	QTL x QTL epi	3.44	Adip7; Adip5	1	Inhba	Htr1b
13	0.00	24.24	20.21	12	73.42	89.12	82.08	NA	rs6314295	rs3654718	4.78	AA	QTL x QTL epi	3.44	Adip7; Adip6	1	Olfactory receptor cluster	Slc8a3
13	40.74	55.35	43.69	6	80.99	92.88	89.62	NA	rs13481789	rs13479099	4.90	AA	QTL x QTL epi	3.44	Adip7; Adip18; Adip18a; Pfat3; Adip2	1;2;8;13	Ranbp9	Alms1
13	40.74	55.35	45.45	4	143.52	154.77	152.94	NA	rs3688207	rs6378384	4.48	AD	QTL x QTL epi	3.44	Adip7; Adip18; Adip18a; Pfat3; Adip12	1;2;8;9;13	Atxn1	Kcnab2
18	24.19	56.21	37.51	12	60.62	67.43	64.06	NA	gnf18.033.953	mCV24690992	5.88	AD	QTL x QTL epi	3.44	Adip8; Adip8a; Adip8b; Kcal1; Mnif2; Adip6	1;8;20	Pcdhb cluster	Lrfn5
18	24.19	56.21	37.93	13	0.00	24.24	15.11	NA	gnf18.033.953	rs13481702	5.87	DA	QTL x QTL epi	3.44	Adip8; Adip8a; Adip8b; Kcal1; Mnif2; Adip7	1;8;20	Pcdhb cluster	Gli3
18	24.19	56.21	50.47	7	30.18	44.44	30.56	NA	rs13483356	rs13479174	5.76	AD	QTL x QTL epi	3.44	Adip8; Adip8a; Adip8b; Kcal1; Mnif2; Adip3	1;8;20	Hsd17b4	Lrfn3

