Riemanian Geometry Via,Math,Sysu,China 2008-6-26

1.Let \mathcal{M} be a Riemannian Manifold with sectional curvature identically zero. Show that, for every $p \in \mathcal{M}$, the mapping

 $exp_p: \mathcal{B}_{\varepsilon}(0) \subset \mathcal{T}_p\mathcal{M} \to \mathcal{B}_{\varepsilon}(p)$

is an isometry, where $\mathcal{B}_{\epsilon}(p)$ is a normal ball at p.

2.Let $\tilde{\mathcal{M}}$ be a covering space of a Riemanian Manifold \mathcal{M} . Show that it is possible to give $\tilde{\mathcal{M}}$ a Riemannian structure such that the covering map $\pi: \tilde{\mathcal{M}} \to \mathcal{M}$ is a local isometry (this metric is called the covering metric). Show that $\tilde{\mathcal{M}}$ is complete in the covering metric iff \mathcal{M} is complete.

3. If a complete simply connected Riemanian Manifold M has a pole, then M is diffeomorphic to \mathbb{R}^n , $n = \dim M$.

4. Introduce a complete Riemannian metric on R^2 . Prove that

$$\lim_{r \to \infty} \left(\inf_{\chi^2 + y^2 \ge r^2} \mathcal{K}(\chi, y) \right) \le 0$$

where $(\chi, y) \in \mathbb{R}^2$ and $\mathcal{K}(\chi, y)$ is
Gaussian curvature of the given metric

the

at

Gaussian curvature of the given metri (x, y).

5.Let $y:[0,a] \to \mathcal{M}$ be a geodesic segment on \mathcal{M} such that y(a) is not conjugate to y(0). Then y has no conjugate points on (0,a) iff for all proper variations of y

 $\exists \delta > 0, s.t. 0 < |s| < \delta \Rightarrow \mathcal{E}(s) > \mathcal{E}(0)$ In particular, if y is minimizing, y has no conjugate points on (0,a).