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Microcanonical fluctuations of a Bose system’s ground state occupation number
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Employing asymptotic formulas from the partition theory of numbers, we derive the microcanonical prob-
ability distribution of the ground state occupation number for a one-dimensional ideal Bose gas confined at low
temperatures by a harmonic potential. We compare the grand canonical analysis to the microcanonical one, and
show how the fluctuation catastrophe characteristic for the grand canonical ensemble is avoided by the proper
microcanonical approachS1063-651X96)06210-1

PACS numbes): 05.30.Jp, 05.30.Ch

The recent groundbreaking work on Bose-Einstein coniures? More precisely, supposing that the gas has a certain
densation of trapped alkali-metal atorfs—3] forces us to total energy, what is the probability density for finding a
rethink some all-too-familiar concepts. Conventionally, thefractionng/N of all particles in the ground state?
statistical theory of ideal Bose gases is based on the grand In view of the pioneering work on Bose-Einstein conden-
canonical ensemble: the given system is assumed to be sation of dilute alkali-metal vapofd—3|, these questions are
contact with a particle-energy reservoir. The mean occupaby no means merely academical. On a time scale relevant for
tion number, at temperatuiie of a single-particle state with these experiments, ultracold atoms stored in their traps do

energye; is neither exchangeenergy nor particles with aeservoir (al-
though atomdeavethe trap during the process of evapora-
_ 1 tive cooling, so that the physics should be described by a
<ni>_ exf (s;— u)/kT]-1" @) microcanonicalapproach. Since the different thermodynami-

cal ensembles cannot be considered as equivalent for con-
wherek is Boltzmann’s constant. The chemical potenial densed Bose gases, it is of utmost importance to investigate
is fixed by the requirement that the sum ofdai|) yields the ~ to which extent the predictions of the conventional grand
preassigned average number of particH3: canonical theory of Bose-Einstein condensation differ from
those of the more appropriate microcanonical one.
D (n)y=(N) @) However, a g_e_neral microcanonical theory of_ Bose sys-
3 ] : tems is quite difficult. Any particular system which lends
itself to a detailed comparison between the microcanonical
The occupation numbers of the single-particle states fluctuand the grand canonical approach must be regarded as a real
ate, both because there are transitions between the states, @yf@mn. The purpose of this paper is to present such a compari-
because the system exchanges particles with the reservofion for a one-dimensional gas of ideal Bosons moving in the
The relative mean square fluctuations are giverj4ly potential of a harmonic oscillator with frequenay[6], i.e.,
we stipulate that the single-particle energies are given by

-y 1 | .
my?  (ny T ® ei=ho(j+1/2), j=012,. ... @

When the temperature approaches zero, all particles occug this case we can resort to powerful theorems from the

the ground state, so thén,)~(N). Then the relative mean asymptotic theory of partitions, and even derive the micro-

square fluctuations of the ground state population, and thuganonical probability distribution for the ground state occu-

the relative fluctuations of the total particle number, ap-Pation numbem,. Needless to say, we do not intend to

proach unity: as a result of particle exchange with the resef0del an actual experiment here; our aim is, rather, to inves-

voir, the uncertainty of the number of particigs) compris-  tigate the fluctuations oh, for a paradigmatic case. Al-

ing the system becomes comparable (1) itself. This though our mpdel is only one-dlme_nS|onaI, it is not trivial.

fluctuation catastrophe is related to the divergency of th&Ve also remind the reader that rigorous studies of one-

guantum coherence length, for T—0. When \; vastly dimensional Fermi systems, such as the |r_1ﬂu.ent|al works by

exceeds the length scale characterizing the system under coremonagé 7] and Luttinger{8], have led to insights of con-

sideration, a rigid distinction between “system” and “reser- Siderable importance. _ _

voir” is no longer practical. Let us first briefly reconsider the ca_nonlcal approach. Ap-
Equation(3), while strictly valid in the framework of the Plying standard argumentd], one obtains

grand canonical ensemb|&], is not applicable to a low-

temperature Bose gas that doext exchange particles with a @% _ E 91_(2) )

reservoir. In this case the fluctuations have to vanish for (N) fiw (N) "’

T—0, when all particles become tied in the ground state. But

what is then the behavior of the fluctuations at low temperawherez 1= exqd(so— w)/kT], and
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FIG. 2. Microcanonical temperature fdr= 1%, versus number
m of excitation quanta. This graph is practically indistinguishable
from a plot of the corresponding exact grand canonical data, and
very well approximated b§T/To= (% w/ 7k T,) J6m.

FIG. 1. Grand canonical ground state fractigng)/(N) versus
temperature, for average particle numb@ =10* (short dashes
10° (long dashes and 16 (full line). The characteristic temperature
Ty is defined bykTy= A w(N)/IN((N)).

1 = xo-1g bosonic microstates. The determinationpgfn) is a famous
9.(2)= f X 9 (6)  Problem in combinatorial analysis that had been considered
“ I(a))oz 'e*~1 already by Euler[10]; tables with values ofp(m) for
m=500 can be found in Refl11]. Although even an exact
When the temperature decreases, the chemical potential formula for p(m) is available[12], the asymptotic formula
approaches the ground state enesgyfrom below, so that derived by Hardy and Ramanujdf3,14 is more suitable
the fugacityz=1/(1+(ny) ') approaches unity. Since the for our purposes:
Bose functiong;(z) diverges forz—1, there is no sharp
onset of Bose-Einstein condensation for particles in a one- exp(c\/ﬁ) 2
dimensional harmonic oscillator potent[&l]. But since this p(m)~ T c=\3m 9
divergency is merely logarithmic,g,(z)~ —In(—In2) 4y3m
~In((ng)) for z—1, and sincgng)=<(N) remains bounded,
there is still a certain nonzero temperature below which th
ground state becomes occupied by a “macroscopic” numbe
of particles. This can be seen clearly in Fig. 1, which showsbe
numerically computed grand canonical ground state popul
tions (ng)/(N) for (N)=10%, 1C, and 16, as functions of
the normalized temperatuf® T,. As motivated by Eq(5),
we have introduced the characteristic temperature

This formula slightly overestimates the actual value of
(m), but already fom= 1000 the error is less than 1.5%.
We then haves(E,N)=kIn[p(m)] for m=<N. If the num-
rm of quanta exceeds the numb¥érof particles, we have
%o determine the numbgry(m) of partitions ofm into at
most Npositive summands. Incidentally, one encounters the
very same problem when dealing with the bosonization of
one-dimensional Fermiong,8,15. There one can argue that
fiw  (N) for the parameters of interest the res_triction on the number of
0T W 7 summands yields only an exponentially small correction to
p(m), which is then neglected. But in our case the correction
to p(m) will become important. Following Erdos and Lehner

The mean energyE) of the grand canonical system obeys [16], we have

(E)=(N)eo _(KkT)?
=] w2, ® 2
ho ho pn(m)~p(mexp| — cexd —xy(m)]|, (10
with g,(z)~ 7%/6 for T<T,, provided the average number h
of particles(N) is sufficiently large. where
The microcanonical analysis is significantly more in- N
volved. Given a gas consisting of exactiy particles in a Xy (M) = C__|n(\/ﬁ)_ (11)
harmonic potential, its total energy is of the form 2\Jm

E=hwo(m+N/2), with integerm. To compute the entropy

S(E,N), one has to determine the number of possibilities forThus py(m)~p(m) as long asym<N. The entropy now
distributing them excitation quanta over thé indistinguish- ~ readsS(E,N) =kIn[py(m)], and the microcanonical tempera-
able bosons. Fam=<N this is equivalent to determining the ture T(M follows from 1M(™9=(9S/JE)y. Figure 2
numberp(m) of partitions ofm into an arbitrary number of shows the temperature determined in this way versus the
positive integers. For example, far=4 there are five par- numberm of quanta forN=10°. Comparing this plot with
titions, m=1+1+1+1, m=2+1+1, m=2+2, the results of a grand canonical calculation {o)=1C’,
m=3+1, and m=4, which correspond to five different and with the approximatiol/ Ty~ (% w/ 7k T,)/6m that fol-
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lows from (8), one finds that on the scale of Fig. 2 all three 30

graphs coincide, i.e., there is no need to distinguish between

T(MY andT.

But the temperature is not very sensitive to possible dif-

ferences between the ensembles anyway, since it depends —

merely on the logarithm of the total number of partitions. C 15

The ground state occupation numbwgy, a quantity of pri- =

mary experimental interest, is a more sensitive indicator. Let =z

p(m;r) be the number of partitions @i into exactly r posi-

tive integers. Whenm is partitioned intor summands

(r<N), i.e.,, whenm quanta are distributed over exactly

particles, then there are no quanta left for the remaining 0

N—r particles, so that these have to occupy the oscillator 0.0 0.5 1.0

ground state, i.e.,N—r=n, Hence, the probability n / N

w(ng/m) for finding ny particles in the ground state when 0

there arem energy quanta is FIG. 3. Microcanonical probability(ne|m) for finding n, par-

p(m;N—ng) ticles in the ground state when the total energy is
w(ng|m)= - 7 (12) E=#%w(m+N/2), multiplied by the total particle numbéi=1¢°.
Pn(m) The respective values ofn (the temperaturesT/T,) are (a):

Microcanonically, the expectation value, of the ground
state occupation number is the first momentgfi,|m); the
fluctuationény is given by the width of this distributiofWe

1.5x10% (1.32); (b): 1.3x10% (1.23); (c): 1x10'° (1.08); (d):
5x10° (0.76); (e): 3x10° (0.59); (f): 1x 10° (0.34);(g): 5x 10
(0.24); (h): 1x10® (0.11). The maximal value adopted by the
curve (h) is about 47.2.

use the overbar in order to distinguish the microcanonical

expectation valua, clearly from its grand canonical coun-
terpart(ng).)

An asymptotic expression fgg(m;r) has been found by
Auluck, Chowla, and Guptfl7]:

p(m) 2
p(m;r)~ — ex —Eexr{—xr(m)]—xr(m) , (13

=

where x,(m) is defined by(11), with N replaced byr:
x,(m)=cr/(2y/m)—In(¥m). Combining (10), (12), and
(13), we obtain

2
ex%——gexn;—xN_%<m>1—xN_%(m>)

w(no/m)~ —

\/E exp(—%exp[—x,\,(m)])

(14

the distribution is not symmetric, so that the expectation
value of the ground state occupation number will differ from
the most probable value.

Figure 4 compares the grand canonical prediction for the
ground state fractiofing)/(N) with the microcanonical ex-
pectation valuéng /N, again for(N)=N=10°. Whereas the
grand canonical and the microcanonical temperature did
agree perfectly, we now find, for temperatures clos€&doa
slight, but clearly visible difference between the ground state
occupation numbers for the two ensembles. This difference
is genuine, i.e., it is not an artifact caused by the asymptotic
formulas: it can even be found for particle numbers of the
order of a few hundred, when the required numbers of par-
titions can still be computed exactly.

We now turn to the central question: what remains from
the grand canonical fluctuation catastrophe in a microcanoni-

Quite remarkablyp(m) has dropped out of this expression;
w(ng/m) is determined entirely by the correction factors that
reflect the respective restrictions on the number of partitions.

This formula (14) remains valid even when the number
m of quanta is so large thady(m) is slightly negative. In
that case the distributiom(ng|m) is a monotonically de-
creasing function ofig. Whenm becomes smaller, i.e., when
the temperature is decreaseg(m) becomes positive. For
sufficiently largexy(m) the exponential in the denominator
of (14) can be replaced by unity, anel(ng|m) develops a
single maximum fomy~N— \min(m)/c. Together with the
known energy-temperature relation, cf. Fig. 2, this distribu-
tion now allows us to investigate how the microcanonical
fluctuations of the ground state occupation vanish for
T—0.

Figure 3 depicts the shape af(ng|m) for N=10° and
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FIG. 4. Microcanonical ground state fractiary /N (full line)

various degrees of excitation, which can be translated into compared to its grand canonical analogmg)/(N) (dasheg, for
the respective temperatures with the help of Fig. 2. Note thai=(N)=1¢’.
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FIG. 5. Microcanonical standard deviatigin, /N for N=10°
particles(full line); the initial slope isw/(1/6InN). The correspond-
ing grand canonical datalashed ling show the fluctuation catas-

trophe, i.e., the dramatic increase of the grand fluctuations when th
ground state is occupied by a “macroscopic” number of particles.

fluctuations ny/N=(n3—n2)*?N vanish linearly with
temperature fol —0,

Mo ™ T 15
N /6InN To’

cal data above 17T,

SIEGFRIED GROSSMANN AND MARTIN HOLTHAUS

54

We remark that Fujiwara, ter Haar, and Wergeldbd
have suggested already, on the grounds of a canonical analy-
sis, that the grand canonical expressioit I{ny) for the
relative mean square fluctuations of the ground state popula-
tion should be replaced at sufficiently low temperatures by
[(N/ng)—1]2, which vanishes properly féF—0. However,

our particular microcanonical system shows a much stronger

suppression of the low-temperature fluctuations: a reasonable

approximation is provided by

N )2
—=1] . (16)
No

In conclusion, we have presented a fairly complete com-
parison between the grand canonical and the microcanonical
theory of an ideal, one-dimensional Bose gas confined by the
potential of a harmonic oscillator. Whereas the grand canoni-

cal approach proceeds along standard lines, the key to the

71_2

(5n0)2

n2  6(Infg)’

microcanonical theory is the distributiow(ng|m) intro-
d

uced in Eq.(14). In view of the current interest in Bose-

Einstein condensation in harmonic traps, a microcanonical
cal setting? Figure 5 shows the answer. The microcanonic%

derivation of its three-dimensional analogue would be most
e

sirable. Within the grand canonical approach, Bose-
instein condensation in three-dimensional harmonic poten-

tials is well understood, both for very larg®&l) [9,18] and
for the comparatively small particle numbégf®] that char-
acterize the current experimerjts—3]. However, these ex-
periments seem to require a microcanonical description. As
in our one-dimensional system, the actual behavior of the
ground state occupation number might differ measurably

sation.

are maximal just below , and merge into the grand canoni- from the grand canonical prediction at the onset of conden-
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