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Employing asymptotic formulas from the partition theory of numbers, we derive the microcanonical prob-
ability distribution of the ground state occupation number for a one-dimensional ideal Bose gas confined at low
temperatures by a harmonic potential. We compare the grand canonical analysis to the microcanonical one, and
show how the fluctuation catastrophe characteristic for the grand canonical ensemble is avoided by the proper
microcanonical approach.@S1063-651X~96!06210-1#

PACS number~s!: 05.30.Jp, 05.30.Ch

The recent groundbreaking work on Bose-Einstein con-
densation of trapped alkali-metal atoms@1–3# forces us to
rethink some all-too-familiar concepts. Conventionally, the
statistical theory of ideal Bose gases is based on the grand
canonical ensemble: the given system is assumed to be in
contact with a particle-energy reservoir. The mean occupa-
tion number, at temperatureT, of a single-particle state with
energy« j is

^nj&5
1

exp@~« j2m!/kT#21
, ~1!

wherek is Boltzmann’s constant. The chemical potentialm
is fixed by the requirement that the sum of all^nj& yields the
preassigned average number of particles^N&:

(
j

^nj&5^N&. ~2!

The occupation numbers of the single-particle states fluctu-
ate, both because there are transitions between the states, and
because the system exchanges particles with the reservoir.
The relative mean square fluctuations are given by@4#
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When the temperature approaches zero, all particles occupy
the ground state, so that^n0&'^N&. Then the relative mean
square fluctuations of the ground state population, and thus
the relative fluctuations of the total particle number, ap-
proach unity: as a result of particle exchange with the reser-
voir, the uncertainty of the number of particles^N& compris-
ing the system becomes comparable to^N& itself. This
fluctuation catastrophe is related to the divergency of the
quantum coherence lengthlT for T→0. When lT vastly
exceeds the length scale characterizing the system under con-
sideration, a rigid distinction between ‘‘system’’ and ‘‘reser-
voir’’ is no longer practical.

Equation~3!, while strictly valid in the framework of the
grand canonical ensemble@5#, is not applicable to a low-
temperature Bose gas that doesnotexchange particles with a
reservoir. In this case the fluctuations have to vanish for
T→0, when all particles become tied in the ground state. But
what is then the behavior of the fluctuations at low tempera-

tures? More precisely, supposing that the gas has a certain
total energy, what is the probability density for finding a
fractionn0 /N of all particles in the ground state?

In view of the pioneering work on Bose-Einstein conden-
sation of dilute alkali-metal vapors@1–3#, these questions are
by no means merely academical. On a time scale relevant for
these experiments, ultracold atoms stored in their traps do
neitherexchangeenergy nor particles with areservoir ~al-
though atomsleave the trap during the process of evapora-
tive cooling!, so that the physics should be described by a
microcanonicalapproach. Since the different thermodynami-
cal ensembles cannot be considered as equivalent for con-
densed Bose gases, it is of utmost importance to investigate
to which extent the predictions of the conventional grand
canonical theory of Bose-Einstein condensation differ from
those of the more appropriate microcanonical one.

However, a general microcanonical theory of Bose sys-
tems is quite difficult.Any particular system which lends
itself to a detailed comparison between the microcanonical
and the grand canonical approach must be regarded as a real
gem. The purpose of this paper is to present such a compari-
son for a one-dimensional gas of ideal Bosons moving in the
potential of a harmonic oscillator with frequencyv @6#, i.e.,
we stipulate that the single-particle energies are given by

« j5\v~ j11/2!, j50,1,2,. . . . ~4!

In this case we can resort to powerful theorems from the
asymptotic theory of partitions, and even derive the micro-
canonical probability distribution for the ground state occu-
pation numbern0. Needless to say, we do not intend to
model an actual experiment here; our aim is, rather, to inves-
tigate the fluctuations ofn0 for a paradigmatic case. Al-
though our model is only one-dimensional, it is not trivial.
We also remind the reader that rigorous studies of one-
dimensional Fermi systems, such as the influential works by
Tomonaga@7# and Luttinger@8#, have led to insights of con-
siderable importance.

Let us first briefly reconsider the canonical approach. Ap-
plying standard arguments@4#, one obtains

^n0&

^N&
'12

kT

\v

g1~z!

^N&
, ~5!

wherez215exp@(«02m)/kT#, and
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When the temperature decreases, the chemical potentialm
approaches the ground state energy«0 from below, so that
the fugacityz51/(11^n0&

21) approaches unity. Since the
Bose functiong1(z) diverges forz→1, there is no sharp
onset of Bose-Einstein condensation for particles in a one-
dimensional harmonic oscillator potential@9#. But since this
divergency is merely logarithmic,g1(z);2 ln(2lnz)
'ln(^n0&) for z→1, and sincê n0&<^N& remains bounded,
there is still a certain nonzero temperature below which the
ground state becomes occupied by a ‘‘macroscopic’’ number
of particles. This can be seen clearly in Fig. 1, which shows
numerically computed grand canonical ground state popula-
tions ^n0&/^N& for ^N&5104, 105, and 106, as functions of
the normalized temperatureT/T0. As motivated by Eq.~5!,
we have introduced the characteristic temperature

T05
\v

k

^N&
ln~^N&!

. ~7!

The mean energŷE& of the grand canonical system obeys

^E&2^N&«0
\v

5S kT\v D 2g2~z!, ~8!

with g2(z)'p2/6 for T,T0, provided the average number
of particles^N& is sufficiently large.

The microcanonical analysis is significantly more in-
volved. Given a gas consisting of exactlyN particles in a
harmonic potential, its total energy is of the form
E5\v(m1N/2), with integerm. To compute the entropy
S(E,N), one has to determine the number of possibilities for
distributing them excitation quanta over theN indistinguish-
able bosons. Form<N this is equivalent to determining the
numberp(m) of partitions ofm into an arbitrary number of
positive integers. For example, form54 there are five par-
titions, m51111111, m521111, m5212,
m5311, and m54, which correspond to five different

bosonic microstates. The determination ofp(m) is a famous
problem in combinatorial analysis that had been considered
already by Euler@10#; tables with values ofp(m) for
m<500 can be found in Ref.@11#. Although even an exact
formula for p(m) is available@12#, the asymptotic formula
derived by Hardy and Ramanujan@13,14# is more suitable
for our purposes:

p~m!;
exp~cAm!

4A3m
, c5A2

3
p. ~9!

This formula slightly overestimates the actual value of
p(m), but already form51000 the error is less than 1.5%.

We then haveS(E,N)5kln@p(m)# for m<N. If the num-
berm of quanta exceeds the numberN of particles, we have
to determine the numberpN(m) of partitions ofm into at
most Npositive summands. Incidentally, one encounters the
very same problem when dealing with the bosonization of
one-dimensional Fermions@7,8,15#. There one can argue that
for the parameters of interest the restriction on the number of
summands yields only an exponentially small correction to
p(m), which is then neglected. But in our case the correction
to p(m) will become important. Following Erdos and Lehner
@16#, we have

pN~m!;p~m!expS 2
2

c
exp@2xN~m!# D , ~10!

where

xN~m!5
cN

2Am
2 ln~Am!. ~11!

Thus pN(m)'p(m) as long asAm!N. The entropy now
readsS(E,N)5kln@pN(m)#, and the microcanonical tempera-
ture T(mic) follows from 1/T(mic)5(]S/]E)N . Figure 2
shows the temperature determined in this way versus the
numberm of quanta forN5106. Comparing this plot with
the results of a grand canonical calculation for^N&5106,
and with the approximationT/T0'(\v/pkT0)A6m that fol-

FIG. 1. Grand canonical ground state fractions^n0&/^N& versus
temperature, for average particle numbers^N&5104 ~short dashes!,
105 ~long dashes!, and 106 ~full line!. The characteristic temperature
T0 is defined bykT05\v^N&/ ln(^N&).

FIG. 2. Microcanonical temperature forN5106, versus number
m of excitation quanta. This graph is practically indistinguishable
from a plot of the corresponding exact grand canonical data, and
very well approximated byT/T05(\v/pkT0)A6m.
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lows from ~8!, one finds that on the scale of Fig. 2 all three
graphs coincide, i.e., there is no need to distinguish between
T(mic) andT.

But the temperature is not very sensitive to possible dif-
ferences between the ensembles anyway, since it depends
merely on the logarithm of the total number of partitions.
The ground state occupation numbern0, a quantity of pri-
mary experimental interest, is a more sensitive indicator. Let
p(m;r ) be the number of partitions ofm into exactly rposi-
tive integers. Whenm is partitioned into r summands
(r<N), i.e., whenm quanta are distributed over exactlyr
particles, then there are no quanta left for the remaining
N2r particles, so that these have to occupy the oscillator
ground state, i.e.,N2r5n0. Hence, the probability
w(n0um) for finding n0 particles in the ground state when
there arem energy quanta is

w~n0um!5
p~m;N2n0!

pN~m!
. ~12!

Microcanonically, the expectation valuen̄0 of the ground
state occupation number is the first moment ofw(n0um); the
fluctuationdn0 is given by the width of this distribution.~We
use the overbar in order to distinguish the microcanonical
expectation valuen̄0 clearly from its grand canonical coun-
terpart^n0&.!

An asymptotic expression forp(m;r ) has been found by
Auluck, Chowla, and Gupta@17#:

p~m;r !;
p~m!

Am
expS 2

2

c
exp@2xr~m!#2xr~m! D , ~13!

where xr(m) is defined by ~11!, with N replaced byr :
xr(m)5cr/(2Am)2 ln(Am). Combining ~10!, ~12!, and
~13!, we obtain

w~n0um!;
1

Am

expS 2
2

c
exp@2xN2n0

~m!#2xN2n0
~m! D

expS 2
2

c
exp@2xN~m!# D .

~14!

Quite remarkably,p(m) has dropped out of this expression;
w(n0um) is determined entirely by the correction factors that
reflect the respective restrictions on the number of partitions.

This formula ~14! remains valid even when the number
m of quanta is so large thatxN(m) is slightly negative. In
that case the distributionw(n0um) is a monotonically de-
creasing function ofn0. Whenm becomes smaller, i.e., when
the temperature is decreased,xN(m) becomes positive. For
sufficiently largexN(m) the exponential in the denominator
of ~14! can be replaced by unity, andw(n0um) develops a
single maximum forn0'N2Amln(m)/c. Together with the
known energy-temperature relation, cf. Fig. 2, this distribu-
tion now allows us to investigate how the microcanonical
fluctuations of the ground state occupation vanish for
T→0.

Figure 3 depicts the shape ofw(n0um) for N5106 and
various degrees of excitationm, which can be translated into
the respective temperatures with the help of Fig. 2. Note that

the distribution is not symmetric, so that the expectation
value of the ground state occupation number will differ from
the most probable value.

Figure 4 compares the grand canonical prediction for the
ground state fraction̂n0&/^N& with the microcanonical ex-
pectation valuen̄0 /N, again for^N&5N5106. Whereas the
grand canonical and the microcanonical temperature did
agree perfectly, we now find, for temperatures close toT0, a
slight, but clearly visible difference between the ground state
occupation numbers for the two ensembles. This difference
is genuine, i.e., it is not an artifact caused by the asymptotic
formulas: it can even be found for particle numbers of the
order of a few hundred, when the required numbers of par-
titions can still be computed exactly.

We now turn to the central question: what remains from
the grand canonical fluctuation catastrophe in a microcanoni-

FIG. 3. Microcanonical probabilityw(n0um) for finding n0 par-
ticles in the ground state when the total energy is
E5\v(m1N/2), multiplied by the total particle numberN5106.
The respective values ofm ~the temperaturesT/T0) are ~a!:
1.531010 (1.32); ~b!: 1.331010 (1.23); ~c!: 131010 (1.08); ~d!:
53109 (0.76); ~e!: 33109 (0.59); ~f!: 13109 (0.34); ~g!: 53108

(0.24); ~h!: 13108 (0.11). The maximal value adopted by the
curve ~h! is about 47.2.

FIG. 4. Microcanonical ground state fractionn̄0 /N ~full line!
compared to its grand canonical analogue^n0&/^N& ~dashed!, for
N5^N&5106.
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cal setting? Figure 5 shows the answer. The microcanonical
fluctuations dn0 /N5(n0

22 n̄0
2)1/2/N vanish linearly with

temperature forT→0,

dn0
N

'
p

A6lnN
T

T0
, ~15!

are maximal just belowT0, and merge into the grand canoni-
cal data above 1.5T0.

We remark that Fujiwara, ter Haar, and Wergeland@5#
have suggested already, on the grounds of a canonical analy-
sis, that the grand canonical expression 111/̂ n0& for the
relative mean square fluctuations of the ground state popula-
tion should be replaced at sufficiently low temperatures by
@(N/ n̄0)21#2, which vanishes properly forT→0. However,
our particular microcanonical system shows a much stronger
suppression of the low-temperature fluctuations: a reasonable
approximation is provided by

~dn0!
2

n̄0
2

'
p2

6~ lnn̄0!
2 S Nn̄0

21D 2. ~16!

In conclusion, we have presented a fairly complete com-
parison between the grand canonical and the microcanonical
theory of an ideal, one-dimensional Bose gas confined by the
potential of a harmonic oscillator. Whereas the grand canoni-
cal approach proceeds along standard lines, the key to the
microcanonical theory is the distributionw(n0um) intro-
duced in Eq.~14!. In view of the current interest in Bose-
Einstein condensation in harmonic traps, a microcanonical
derivation of its three-dimensional analogue would be most
desirable. Within the grand canonical approach, Bose-
Einstein condensation in three-dimensional harmonic poten-
tials is well understood, both for very large^N& @9,18# and
for the comparatively small particle numbers@19# that char-
acterize the current experiments@1–3#. However, these ex-
periments seem to require a microcanonical description. As
in our one-dimensional system, the actual behavior of the
ground state occupation number might differ measurably
from the grand canonical prediction at the onset of conden-
sation.
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FIG. 5. Microcanonical standard deviationdn0 /N for N5106

particles~full line!; the initial slope isp/(A6lnN). The correspond-
ing grand canonical data~dashed line! show the fluctuation catas-
trophe, i.e., the dramatic increase of the grand fluctuations when the
ground state is occupied by a ‘‘macroscopic’’ number of particles.
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