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The use of a transfer matrix method to solve the 3D Ising model is straightforwardly
generalized from the 2D case. We follow B. Kaufman’s approach. No approximation is made;
however the largest eigenvalue cannot be identified. This problem comes from the fact that
we follow the choice of directions of 2-dimensional rotations in the direct product space of the
2D Ising model such that all eigenvalue equations reduce miraculously to only one equation.
Other choices of directions of 2-dimensional rotations for finding the largest eigenvalue may
lose this fascinating feature. Comparing the series expansion of internal energy per site at the
high temperature limit with the series obtained from the computer graphic method, we find
these two series have very similar structures. A possible correcting factor ®(z) is suggested
to fit the result of the graphic method.

PACS. 05.50.+q — Lattice theory and statistics; Ising problems.
E-print: Cond-mat/0003367

1. Introduction

Although over a half-century has passed, solving the 3D Ising model exactly is still an open
problem. Anyone who claims to solve this modd exactly should, at least, evaluate its partition
function, internal energy per site, critical temperature and the critical exponents o and 3 calculated
from the relevant heat capacity and magnetization per site individualy. In addition, a crucial test,
similar to one L. Onsager [1] did in 1944, to check whether the results are right or wrong, is
that one should compare the series expansion coefficients of the internal energy per site at the
high temperature limit with the series obtained from some other methods, [9] e.g., the computer
graphic method, at least up to the first three or four nonvanishing terms [2, 4-8].

Among the many various methods for deriving the partition function of 2D the Ising modd,
the transfer matrix method is the oldest and original method. However, the generalization of this
method to the 3D case has had relatively little discussion. In this paper, we have no ambition
to solve this 3D Ising model the satisfying al of the requirements mentioned above. Instead, B.
Kaufman’'s approach [3] in the 3D Ising model is carried out step by step. Any approximation is
avoided if we possibly can. In the following, it is shown that, when a transfer matrix formalism
is set up, a spinor representation can work. 2-dimensional rotations in the direct product space
and the feature that al of the eigenvalue equations reduce miraculously to only one equation also
appear in the 3D Ising model. Even though the final high-temperature expansion series of internal
energy per site is not exactly the same as the computer graphic method’s, these two series do
have the same structures. This discrepancy may be related to a dilemma between the choice of
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the directions of the 2-dimensional rotations in order to find the largest eigenvalue and losing the
fascinating feature that all of the eigenvalue equations reduce to only one equation. Be it ever not
so perfect, we hope this generaization may lay the foundations for further study.

II. Transfer matrices

Let us consider a simple cubic lattice with [ layers, each has m rows and n sites per row.
So there are N points on the lattice, N=mnl. Periodic boundary conditions are used. To each
lattice point, with integral coordinates T, p, ¢, we assign a spin variable s(r, p, () which takes two
values = 1. The energy of the configuration is given by

n m
$)==JY > > {s(r,p.0)s(r + 1,p,¢)

=1 p=1 (=1 (1)
+5(7,0,Q)s(T,p+ 1,Q) + 5(7, p, Q)s(7, p, C + 1)}

J(> 0) is the coupling of a pair of neighboring spins. The partition function

z Z e~ E()/T @
(s)
= Z H H H K s(T.p.C)s(T+1,0.0) (K 5(7,p,0)s(T.p+1,0) L K's(7,p,C)s (T, g+1) 3)

(s) T=1p=1(¢=1

is taken over al the 2"V possible configurations. Here K = .J/T. Now we factor the partition
function into terms each involving only two neighboring spins, giving

Z= Z Z ’ ‘VIS(77)>3(27'7')’V‘S(?’v'?'»”'
s(1,,) s(n,,-) (4)

<8(TL, " ) ‘ v | 8(1’ K )>

=Try", ©)

where the matrix e ements of the transfer matrix V are

m 1

(s(T,,) | V]s(r+1,--)) = H H 810, Q)s(T+1,p,0) o Ks(7,p,0) s(7,p41,C)
p=1¢=1 (6)

eKS(T7p7C)S(T7p7C+1) .
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V can be put into a more convenient form by factoring it into the product of simpler matrices,

YV = VW), (7)
m 1

(s, ) [ Vi s(r+ 1)) = [T e rmertn0, ®
p=1¢=1
m 1

(s(r. ) | Vel s(r+1) = JTT]e™ 09600 0 0ur i, ©)
p=1¢=1
l

(s(ro) [ Vs | s(r 41, =TT 6y ostrripg-  (10)
p=1¢=1

The above decomposition may be checked as follows:
(s(1,,) [ VaVaV1 | s(T+1,+,)) (11)

= > > X >N st s lslr+1,s0)

s(T+1,,) 8'(7,,) 8/ (7+1,,) 8" (T )S (T—l—l”)

(s(r+ L) [8'(m () [ V2 [ 8T+ 1,,0))

(' (T + 1) | 8" (r ) () [ Vi 87 (T4 1,0,0)

<S”(T +1,) [s(r+1,-,)) (12)
p: : {5(7+17p C) ’(T,p,g) S/(T+1,p,g) SH(’T,p,C) SH(T—I—I,p,C)

(s mpQsme g, o O s(r41.00) Os(ra1p Q) (r,0.0))

( Ks'(1,p,)s (T’p+17g)55/(77P7<)SI(T+17P7<))(58/(7-"—1,/),()5//(7',/)7())

(eKs (1,0,¢)s (T+1,P7<))(5 ,,( L) (T+1,P7C))} (13)

m 1
= H H Ks(7,0,0)s(741,0,0) o K5(7,0,0)s(T:p+1,0) o K5(7,0,0) s(T,p,(+1) (14)
In the above equation, due to periodic boundary conditions, the identity

isused. Furthermore, V1, Vs, V3 can berewritten as matricesin the direct product space. Observing
from (8), let us define a matrix a with matrix elements

m 1
srpg "(1,0,) HH s(T,p+1,8)s' (1,0+1,¢) (15)

H::]~

(s(rp.0) | @] s(7 + 1, p,()) = oTrOerHlng), (16)
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e e K
a= ( K K > 17)
= (I + 6_2K0'x) (18)
= (2 sinh 2K) 2K os, (29)

Iisa?2 x 2 unit matrix. tanh K* = e 2K, tanh K = ¢ 257, sinh2K sinh2K* = 1. To
simplify the matrics V1, Vs, Vs, we define

m times of I

=1
Xz-,j:(I®I®---®I)®---®(I®~--®’%?®---®I)---
¢=1 ¢=j (20)
QURI®---®1I).
¢=l

Y;; and Z; ; are also defined similarly by replacing the Pauli matrix o, with o, and o respec-
tively.

ml times
—~~
Vi=a®a®- - -Qa (21)
m 1
= (2sinh 2K)™2 TT [ ™ *o. (22)

p=1 ¢=1

As for Vs, we introduce another matrix b with matrix e ements

(8(7’, P C) | b | S(T + 1, p, C)> = 65(7_7’)74)5(7__’_17/)70eKs(T,p,C)s(T,p+1,C)’ (23)
ek 0 0 0
-K
b= 8 8 SK 8 _ eKUZ(X)UZ _ eK(O'Z®I)(I®O'Z)’ (24)
0 0 0 e K
ml times
e e
Vo=bob® - ®b (25)

— ﬁ H e’ Zpt1.¢72p.¢ (26)

p=1 ¢=1



VOL. 38 S. L. LOU AND S H. WU

Similarly, V5 is obtained from a matrix c,

m times m times

e KERI@ N IRI®--IRo.)

ml times

——
V3=c®R®c®---Rc

m

l
= H H eKZpcZpcv1
p=1¢=1

II1. Spinor representation

845

(27)

(28)

(29)

V1, Vo, V3 in 2™ -space can be related to matrices in 2ml -spaces via Dirac T' matrices.
The process of reducing the dimensions of 1 had been used in 2D the Ising model. Define a set

of matrix I, . satisfying anticommutation relations

FM7CFu/7</ + F‘U,I,C/FHHC = zéuu/(sgc/’

(M?/’L,:1722ma CvC,:172l)

Every T, ¢ isa2™ x 2™ matrix. A possible representation of T, ¢ is

'y = Zia
o = Y

) )

I'sp = X1122:

)

I'yp = Xia1Ya:

Pom—11 = X11Xo1-- Xpm—1,1Zma

Fomi = X11Xo1 - Xm—1,1Ym1
Ip = (X11Xo1-Xm1) Zi2=U1Z12
I'op = (X13Xo1---Xm1) Yi2=U1Y1

Flg = UlUQ"’UC_1Z17C
Iae = Ulz- Ui

Lop1y = UhUs---Up1Zpm;
Loy = UhUz---Up_1Yyy

)

(30)

(31)

(32)
(33)
(34)
(35)

(36)
(37)
(38)
(39)

(40)
(41)

(42)
(43)
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¢th block

The total number of the T' matrix is 2ml. A special 2™ x 2™ matrix U is defined as

U=0, R0, R0y

ml times

l 2m
=TT (TT Tuc)-
=1 p=1

U and U, have the following relations:

U? =1, U =1,
UI+U)=1+U, U+ Ue) =1+ U,
UI=U)=U—1,  UI=U)=Uc~1,

{U,Tpc} =0, {U¢,Tuct =0,
[U.TucL o] =0, Ue.Tyuely ] = 0.

By definition of I", we notice that

szvgrzprC = Yp7CZp7< = Zvag ?

then
m 1
Vi = (2sinh 2K) ™2 T T &% T2rrcT2ec .
p=1¢=1
Simlarly,
F2p+17CF2p,C = in,CZpH,g )
then we have
l m—1
Vy = H{GKZm,CZLC 11 esz,Csz’c}
¢=1 p=1
l m—1
_ H{eiKUCFLcFQm,C H eiKrgp’cr%H’c}.

p=1

VOL. 38

(44)

(45)

(46)

(47)
(48)
(49)
(50)
(51)

(52)

(53)

(54)

(55)

(56)
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With the identity,
(Uc1,¢Tam,e)? = U1, ¢Pam U1 Tome = —1 (57)

Vs can be rewritten as

1 m—1

1 . 1 : :
Vo = H{ [5(1 + UC)@ZKFI’CFQm’C 4 5(1 _ Uc)e—zKF1,CF2m,c:| H e T2p,cPapyi g } (58)
¢=1 p=1

Since U, commutes with T'a, (T2, 1,¢, the projection operators 3 (I + U;) project Vs into 2!
pieces. For

m -1

Vs = H (eKZNZ,,,l H eKZp,CZp,CH)’ (59)
p=1 ¢=1
the situation seems more complicated.
ZpcZpctr = (ZpeZpt1.)(ZpricZprac) - (ZmcZrcr)(Z1 g1 Z2.041)
- (Zp-1¢+1Zpc41); (60)
= (=ilops1L2p ) (—il2p13,T2p12,0) -
(=il c1l2me) -+ (=il2p-1,¢4102-2,041), (61)
= i"TopcTops1.cToprac Tamcliganr  Topo1ct1, (62)
= i"Topc(Topt1,¢ - Top—2,c41)2p—1,c415 (63)
= +ilop Wopp1,cLop—1,c41, (64)
= iWopr1,cl2pclop—1,c41- (65)
Wapi1,¢ is defined as
Wapt1e = " Topp1Toptroc Topscr1lopaci1 (66)
(p+1,0) (p—1,(+1)
— I1®-IQ T ®-® T o0l (67)

m—1 times of oz

Wap1,¢ has the property that it anticommutes with I, , inside the region that the integral coor-
dinates (1, o) from (2p+1,¢) to (2p — 2,{ + 1), whereas it commutes with I", , outside of that
region.

ZpiZpy = (ZpiZps10) -+ (ZmaZ1a)(Z13Za2,1) -+ (Zp-1,1Zp1) (68)
= —i"Ul'yplopt10 Tomal'1121 - Top-1 (69)
= +iUWopi1102p-1112p1- (70)
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Wapt1y = ™ Topp1l2p420 - Tomalia - Topooi (71)
= 0, ®® 0p VIR ®IQ 0y @@ 0g . (72)

-~ -~ — -~

(171) (p_lvl) (p+171) (mvl)

Then we have

m -1
Vy = H{e+iKUW2p+1,lF2p—1,1F2p,l H eiKW2p+1,cF2p,cF2p—1,c+1}. (73)
p=1 ¢=1

A remarkable observation of Kaufman is that decomposing V of the 2D Ising model into

the product of factors like egrr’ which is interpreted as a two-dimensional rotation with rotation
angle 9 in the direct product space. We follow this spirit and decompose the factors into several
2D rotations,

etiEKUWap1112p-1,1T25

_ %([ + U)e+iKW2p+1,lF2p—1,1F2p,l + %([ _ U)e*iKW2p+1,lF2p—1,1F2p,l (74)

1 1 ; 1 .
= U+ U){g(f + W g)e i 2omtalznt 4 S~ W2p+1,l)€_lm2”_1’lr2”’l}
1 1 —iKT r 1 +iKT" r
(I = U U+ Wappa etz o o1 = Wapa e m2emtient ¢(79)

e BEWapt1,¢l20,cl2p-1,¢+1

= %(I + Wap g c)e T2l zo1enn 4 %(I — Wapp1o)e Rloeclzomtcrn, (76)
In the 2D Ising model the V' are decomposed into 2 pieces. Thisis not so simple in the 3D Ising
model. Due to the projection operators § (I £ U), (I £ U;), (I £ W), V has 2! x (2 x 2™)
pieces. Only one piece will produce the largest eigenvalue, which dominates the value of partition
function.

Since Wy,41,c may commute or anticommute with I, ,, we have to check the commutation

relations between the projection operators and the product of the factorslike e%QFF, sincethe dogma
states that two matrices are simultaneously diagonized if and only if these two matrices commute.
1

V comprises the product of projection operators and alot of €2?TT. So if the commutation relations
are not valid, the whole scheme may break down. Commuting %(I + U) with the product of all

1

factorslike e2?'"" does not give any trouble. Any single projection operator 3(I+U;) or (I+W)

may do not commute with some 39T However, fortunately, the product of all the projections
in any one piece of V, e.g.

P = %(I - U)(ﬁ %(I - U<,)> (ﬁ 11 %(I - ng_LC)), (77

¢'=1 p=1(=1
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do commute with any 3T because 2T passes through P will change the sign of 10TT an
even number times and it does not change sign eventualy.

How to choose the proper piece and obtain the largest eigenvalue? We have no answer. A
possible rule may be followed that al eigenvalue equations should reduce to one equation. We
will show this point in the next section. This is a beautiful feature in the 2D Ising model. Let us
consider one possible piece of V,

V = (2sinh2K)™/2V (78)

&

-1
eTiKT2p-11T25 H eiKsz,<F2p1,<+1}

’,:13

p=1 (=1

l m—1
{H KTy (1o ¢t H ein2p,cF2p+1,c}

¢'=1 =1

(!

In essence, YV includes the repetition [ times of the same rotations as in the 2D Ising mode,
appearing in the second and third brackets of (79), and the new rotations in the first bracket of
(79), relating to the third dimensional coupling beyond the 2D Ising modd.

1) :N

ﬁ Ty iy Ty ,,}. (79

IV. Eigenvalue equations
The rotation operator in the spinor representation,
Sao(8) =20 (A 0), (80)

has a one-to-one correspondence to the 2D rotational matrix w(Ao | ) of the I' matrix.

Sra (OaSro(0) =Y w(Ao | O)anls, (81)
S HO)TAS), () =Ty cosf + Tysind, (X # o), (82)
S (0T S\ (0) = —Txsin @ + Tycosf, (o #N), (83)
S5 ()T 0 Sxe (0) =T, (a # N\ a#0). (84)

S (6) isa 2D rotationsin the direct product space. The rotations, e3'", have different rotational
angles, +6 and —6. We mean they have different directions of rotations. The eigenvalues of the
rotational matrix w are 1 with (2ml—2)-fold degeneracies and e** two nondegenerate eigenval ues,

whereas the eigenvalues of S\, in the spinor representation are ei% each with 2™-1 -fold
degeneracies.
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The correspondence with V is

& (2sinh 2K)™/2 &',

w g
m -1
o o= { Hw(Zp— 1,1;2p,1 | +2iK) Hw(Z,o,C;Zp— 1, +1| ZZK)}
p=1 ¢=1
l m—1
{TL w1, ¢2m, ¢ 1 2ik) T w(2p, G20+ 1,¢ | 2iK) }
¢'=1 p=1
l m
{TI II <" —1.¢"20".¢" 12iK7) )
CN:IpNZI
= W3WaWw1i.
Q
Q
1 1
wiwawi = ,
Q
Q 2mlx2ml
A B 0 --- 0 -Bf
Bf A B 0 0
0 Bt A B 0 :
Q= ,
0 0 B" A B
-B 0 o B A /), .
c*c is*c _% —iS(_lf )
A= —is*ec c*c¢ )’ B= (1+c*) 1 ’
18 3 )
1 1
BT—< 2 ol EC)>7
is(=3=) -3

s =sinh 2K, c¢=cosh2K, s* =sinh2K*, ¢* =sinh2K".

VOL. 38
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(86)

(87)

(88)

(89)

(90)

(91)

(92)
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1 1
The matrix € is just the same matrix considered in the 2D Ising model. wiwow? isin symmetric

form such that its eigenvalue equations are much more easier to handle.

m -1
wgzHw(2p—1,1;2p,z12¢K>Hw<2p,g;2p—1,g+1\2ﬂ() (93)
p=1 (=1
A B 0o -~ 0 -8t
B A4 B 0 -+ 0
o B A B 0 -
o --- 0 B A B
-B 0 0 BT ‘A 2mlx2ml
0 —is 0
0 0 O
¢ 0 0 0 —is O
C .
A= B = 0 0 ,
c :
2mx2m 0 —is
0 0 2mx2m
(95)
0
s 0 0
00 0 0 O
B=| : { 4is 0 0 -- . (96)
0 0
is 0 2mx2m

Now we proceed to solve the eigenvalue equation
w¥ = \U, (97)

where & = (2sinh 2K)™/ 2wy [w]*wyw]’?],

z o yu
2% g v u
v=| 2% |, yo=| Vu ,u:<“1>. (98)
. . U2
2! g y"u
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By imposing the constraint,

d= -1, or zzeiwli (ta=1,3,5--+), (99)
one reduces eigenvalue equation (97) to

(A+2B+2"BY Qv = Ao . (100)
Further, imposing the constraint,

y"=-1, or y:ei%l (t1 =1,3,5--+), (101)
(100) is reduced to

DA+ yB+y B u= )\, (102)

i1
D:(.C iz 8)7 (103)
iz s c

A+yB+y ' Bf

B c*c — cos T is*c — i(%ﬁ*)se mo— i(%)seii%
—is*c+i(%)sei% -I—z'(%*c*)sefiw_rfwl c¢*c — cos T
(104)

The eigenvalue equation (102) is further reduced to

A2 —2coshy A+1=0. (105)
A = exp(=+7y) is the solution of A. ~ is determined by

3
coshy = < c(cos 01 + cosBy) + sc cos by cos by + s? sin ) sin O, (106)

where two continuous variables, 61, 8-, are abtained by taking the thermodynamic limit, m,l — oo,

it it
e 0, R — 0s.

The partition function of V is
Z~ AN, (107)

The free energy per site under the thermodynamic limit is

1
f= 3 J\}Enoo N7linz (108)
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1 1 27 27
= —ZIn(2sinh 2K 1/2——/ / ~ (07, 02)d6 dbs, 109
5( ) 25 ),/ (61, 02)d01d0o (109)
where g = % For convenience, J = 1, the internal energy per siteis

u

0
=5 (Bf) (110)

1 27 2 8"}/
= —coth2K — — — dB1d0-. 111
0 872 /0 , oK (111)

V. High temperature limit

Let us expand u in terms of = at high temperature limit, x small, and compare the series
of u obtained from the computer graphic method [2].

r = tanh K, ¢=cosh2K = 14_—3527 s =sinh2K = 2—$, (112
1— a2 1— a2
coshy = (Zfl—+x;c)22);5x — 1 iii (cos 61 + cos 62)
+2(xl(1_——;;;22) cos 01 cos 09 + % sin 61 cos 65, (113)
S_Z{ = 2(sinh 7)_1{— S x?igilx;);gzi R 1 322 (cos 01 + cos 02)
+1E|—16_x—1;—)2x4 cos 01 cos 09 + Zl(ﬁ(l_——';;z) sin 01 sin 92}. (114)

With the help of computer program Maple V Release 5.1, we get our result
u= —3z — 8z — 282° — 13227 — 8322° + O(z'?). (115)

Comparing the result obtained by the computer graphic method, the series expansion of « for a
simple cubic lattice can be transformed from the partition function,

ZW = 2cosh® K (1 + 32 + 2226 + 187.52° + 198020 + O(212)), (116)
SO
U= —8% In Z% (117)

= 3z — 122 — 1202° — 133227 — 1767627 + O(2'1). (118)
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(115) and (118) have very similar structures. The coefficient of 2~! does not exist in our result
(115) though it exists naively in coth2K of (111). The first nonvanishing term —3z of (115)
and the vanishing of all coefficients of even powers of x are the same as (118). All terms, up to
O(2?), with minus signs in (115) are also the same as (118). The reason why (115) and (118) do
not have the same first three or four coefficients may come from the fact that we cannot decipher
precisdly the largest eigenvalue of V . On the other hand, if we choose different directions for
the 2D rotations, the eigenvalue equations may not be reduced to only one equation. This is a
dilemma.

The correct relation of cosh v implies the correct thermodynamic quantities of the 3D Ising
model. To guess the correct relation as (106) may be a promising way for finding the right
resolution of the 3D Ising modd. For example, trying to repair (106), if we multiply the matrices
A, B and B, or w3, with a correcting factor ®(x), then we have

3
coshy = £ ccos by + ®(—ccos by + sccos by cos Oy + s2sin 0y sin 02). (119)
s

With the help of Maple V, setting

2 24 1232
@(x):l—m2——7x4——9m6— 525

8 _ 10
5 5 g O(z™), (120)

then the series expansion of « has the same result as (118). ®(z) may be explained as, something
like, a weighting function for different directions of 2D rotations.
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