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When a block of an elastomer is bent, the compressed surface may form a crease. The critical strain
for creasing measured experimentally is known to disagree with that predicted by linear perturbation
analysis. This paper calculates the critical strain by comparing the elastic energy in a creased body
and that in a smooth body. This difference in energy is expressed by a scaling relation. Critical
conditions for creasing are determined for elastomers subject to general loads and gels swelling
under constraint. The theoretical results are compared with existing experimental observations.
© 2009 American Institute of Physics. �doi:10.1063/1.3211917�

When a block of an elastomer or a gel is bent, the com-
pressed surface remains smooth initially, but then suddenly
forms a crease.1,2 Similar creases have also been observed
when a gel imbibes a solvent and swells.3–6 The creases are
often undesirable in applications. For example, repetitive
folding and unfolding of creases on the side walls of a tire
may result in fatigue failure. In biomedical applications, in-
organic materials are often coated with thin layers of gels,
where creases may damage the coatings.

While creases are commonplace in daily life �e.g., Fig.
1�, their scientific understanding has been intriguing. Biot’s
linear perturbation analysis showed that the homogenous de-
formation in a rubber becomes unstable when compressed to
a critical strain, �biot=0.46.7 This theoretical value, however,
exceeds the experimental value, �exp=0.35.1,2 This discrep-
ancy was not addressed in the theoretical literature8–10 until
very recently, when crease was identified as a distinct mode
of instability, different from that analyzed by Biot.11,12 By
following a limiting process, Refs. 11 and 12 show that the
two modes of instability occur at different critical strains.

The difference between the two modes of instability may
be understood as follows. Subject to a load, a rubber devel-
ops a field of deformation. Of all possible fields of deforma-
tion, the stable field minimizes the free energy of the rubber.
Instead of searching among all possible fields, Biot carried
out a linear perturbation analysis, which in effect restricted
his search among fields that deviate from the homogenous
state by infinitesimal strains. For a crease, however, a stripe
of the surface folds and makes contact to itself. While the
region affected by the initial crease is small, the amplitude
deviates from the homogeneous state by large strains.

Here we analyze the creasing instability by comparing
the elastic energy in a creased elastomer and that in a smooth
elastomer. We express this difference in energy by a scaling
relation. Critical conditions for creasing are obtained for both
elastomers under general loads and gels swelling under con-
straint. The theoretical results are compared to available ex-
perimental data.

Figure 2 sketches the model to be analyzed. An unde-
formed block of elastomer is taken to be the reference state
�Fig. 2�a��. Attached on the surface are three markers: A�, O,
and A, separated by an arbitrary length L. The block is then

compressed by a strain �, defined as the shortening divided
by the original length of the block. The elastomer may either
deform to a homogenous state �Fig. 2�b��, or form a crease
�Fig. 2�c��. In the creased state, the surface folds at O, and
stripe OA� contacts with stripe OA.

We analyze the inhomogeneous deformation of the
creased state in Fig. 2�c� by using the finite-element soft-
ware, ABAQUS 6.7.1 �standard�. The elastomer is taken to
deform under the plane-strain conditions, and obey the neo-
Hookean model with the free-energy density13

W =
�

2
��1

2 + �2
3 + �3

2 − 3� , �1�

where � is the shear modulus, and �1, �2, and �3 are the
principal stretches. The elastomer is taken to be incompress-
ible, so that �1�2�3=1. Due to symmetry, only the right half
of the block is modeled. The block is compressed by a uni-
form displacement on a boundary far away from the crease.
A displacement is specified on the segment OA of the top
surface, so that it rotates to the vertical position illustrated in
Fig. 2�c�. The vertical displacement of OA is not prescribed
and is solved as a part of the boundary-value problem. We
find that a block of size 50�50L is large enough to mimic a
semi-infinite block.

The size of the initial crease is taken to be much smaller
than the size of the block, so that L is the only length in the
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FIG. 1. �Color online� A crease formed on the compressed surface of a
popular Chinese food, Liang Fen �a starch gel�.
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boundary-value problem. Let U be the elastic energy per unit
thickness of the creased body minus that in the smooth body.
Dimensional considerations dictate that

U = �L2f��� , �2�

where f��� is a dimensionless function of the applied strain.
Figure 3 plots the results calculated by using the finite ele-
ment method. In the absence of the applied strain, the ho-
mogenous state has no elastic energy, but the creased state
has elastic energy, so that f�0��0. When a small compres-
sive strain is applied, the crease helps to relieve some of the
compression, so that f��� is a decreasing function. At a criti-
cal strain, �c, the creased state has the same energy as the
homogenous state, f��c�=0. Our numerical calculation gives
the value of the critical strain �c�0.35.

The curve on Fig. 3 stops at the critical point. No state of
equilibrium exists when ���c. A semi-infinite block does
not have any length scale. Following Eq. �2�, when ���c,
the creased state has a lower energy than the homogenous
state for any depth L of the crease, so that the crease will
extend indefinitely without reaching equilibrium. In a finite
block constrained at the bottom, such as a coating on a rigid

substrate, the crease does equilibrate at a finite depth. The
equilibrium depth of a crease in a finite body is not studied in
this paper.

The predicted critical strain, �c=0.35, agrees with the
experimental value.1,2 The agreement is remarkable, consid-
ering that the theory is based on an idealized material model
�the neo-Hookean model�, and that the two sets of experi-
ments were carried out using different materials. The agree-
ment, however, is not fortuitous. In a limiting case, when a
semi-infinite block of an incompressible material is folded
along a straight line on the surface, such that one half of the
surface contacts the other half of the surface, the state of the
deformation is fully determined by geometric considerations,
giving stretch 1 /�2 in the radial direction, and stretch �2 in
the circumferential direction.14 The deformation is finite but
modest, and should be well represented by the neo-Hookean
model.

We next consider an elastomer under general loads. Con-
sider a semi-infinite block of an elastomer in a homogeneous
state of deformation, with �1 and �2 being the stretches in the
directions parallel to the surface of the block, and �3 being
the stretch in the direction normal to the surface. The com-
pression in direction 1 is taken to be more severe than that in
direction 2, so that when a crease forms in a plane normal to
direction 1, leaving �2 unchanged. That is, the crease is in a
state of generalized plane strain.

This generalized plane-strain problem ��2=constant�
may be transformed into an equivalent plane-strain problem
��2=1�. Figure 4 illustrates that a unit cube in the reference
state �a� deforms by principal stretches �i to the current state,
�b�. Imagine an intermediate state, and �c� of stretches �2

0

=�2 and �1
0=�3

0=1 /��2. Now regard the intermediate state
as another reference state, and let �i� be the stretches in the
current state measured with respect to the intermediate state,
so that

�1 = �1�/��2, �3 = �3�/��2, �2 = �2. �3�

Substituting Eq. �3� into Eq. �1�, we obtain that

W =
�

2�2
���1��

2 + ��3��
2� +

�

2
��2

2 − 3� . �4�

Because �2 is a prescribed constant, the last term in Eq. �4�
does not contribute to the difference in the energy between
the creased body and the smooth body. The first two terms in

FIG. 2. �Color online� Schematic a semi-infinite block of elastomer. �a� The
undeformed elastomer is taken to be the reference state. �b� The block is in
a state of homogeneous deformation. �c� The block is prescribed with a
crease.
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FIG. 3. �Color online� The difference in elastic energy between the creased
state and the homogeneous state, calculated with ABAQUS. The critical
value of applied strain is approximately �c�0.35.

FIG. 4. �Color online� A generalized plane-strain problem and its equivalent
plane-strain problem.
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Eq. �4�, together with equations of equilibrium and kinemat-
ics, governs the deformation from the intermediate state to
the current state, which is a plane-strain deformation. Con-
sequently, the generalized plane-strain problem is equivalent
to a plane strain problem with an effective shear modulus
� /�2.

The critical strain �c=0.35 was obtained under the plane
strain conditions. This critical condition corresponds to �1
=1−�c=0.65, and is applicable to the deformation from �c�
to �b� in Fig. 4, giving �1�=0.65. According to Eq. �3�, this
condition corresponding to �1

��2=0.65. Recall that �1�2�3
=1, we write the critical condition as

�3/�1 = 2.4. �5�

The same procedure transforms Biot’s critical strain �biot
=0.46 to an expression valid under the generalized plane-
strain conditions,

�3/�1 = 3.4. �6�

Equations �5� and �6� are valid under the generalized plane-
strain conditions for any arbitrary value of �2.

Creases are often observed on the surface of a swelling
gel.3–6 Consider a gel bonded on a rigid substrate, and swells
in the direction normal to the surface. Let � be the ratio of
the thickness of the swollen gel and that of the initial gel.
Imagine that we remove the constraint, and the gel instanta-
neously deforms into a stress-free state, with an isotropic
stretch �1/3. From this imaginary state to the constrained
swollen state, the gel stretches by �1=�2=�−1/3 and �3
=�2/3. Inserting these stretches into Eqs. �5� and �6�, we ob-
tain that the critical condition is �c=2.4 for creasing, and is
�biot=3.4 for linear perturbation. Several sets of experimen-
tal data are found in the literature,4–6 giving �exp=2.0–3.7.

The above calculation assumes that creasing is a fast
process and solvent in the gel has no time to migrate, so that
creasing of the gel resembles that of an incompressible

elastomer.15 Further study is needed to understand the varia-
tions in the experimental data, and to examine the conse-
quence of solvent migration.

In summary, by comparing the energy of the creased
state and that of the homogeneous state, the theory predicts
that the crease lower the elastic energy of the body when
compressed by 35%. This critical strain is below that pre-
dicted by Biot’s linear perturbation analysis, and agrees with
experimental observations. Critical conditions for creasing
are also obtained for an elastomer under general loading, and
for a swelling gel attached to a substrate.
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