Weak Limits Theorem Let $\{g^n\}$ be bounded in $L^\infty(I)$, with $I\subset R^1$, $|I|<\infty$. Then - $g^n \to g$ in $L^p(I)$ weakly for some $g \in L^p(I)$, $\forall 1 .$ - Furthermore, $g \in L^{\infty}(I)$. Proof The weak convergence follows from the reflexivity of L^p (1 . We then focus our attention to the boundedness of $\left\|g\right\|_{L^p}$. Let $$\sup_{n\geq 1} \|g^n\| = M < \infty,$$ and $$g^n \to g$$ weakly in L^p . Then Mazur tells us that $$h_k = \sum_i \lambda_i^{(k)} g^{n_i^{(k)}} \rightarrow g$$ strongly in L^p . Thus $$\left\|g\right\|_{L^p}\leq M.$$