Weak Limits

Theorem Let $\{g^n\}$ be bounded in $L^\infty(I)$, with $I\subset R^1$, $|I|<\infty$.

Then

- $g^n \to g$ in $L^p(I)$ weakly for some $g \in L^p(I)$, $\forall 1 .$
- Furthermore, $g \in L^{\infty}(I)$.

Proof The weak convergence follows from the reflexivity of L^p (1 .

We then focus our attention to the boundedness of $\left\|g\right\|_{L^p}$. Let

$$\sup_{n\geq 1} \|g^n\| = M < \infty,$$

and

$$g^n \to g$$
 weakly in L^p .

Then Mazur tells us that

$$h_k = \sum_i \lambda_i^{(k)} g^{n_i^{(k)}} \rightarrow g$$
 strongly in L^p .

Thus

$$\left\|g\right\|_{L^p}\leq M.$$