I write this note to review and let me be familiar with shock theory.

Recall Ak-shock (k $=1,2, \cdots, n)$ for the conservation laws

$$
u_{t}+f(u)_{x}=0, t>0, x \in R^{n}
$$

is a hypersurface S with speed s where u is
discontinuous through S, and

$$
\left\{\begin{array}{l}
\lambda_{k}\left(u_{r}\right)<s<\lambda_{k+1}\left(u_{r}\right) \\
\lambda_{k-1}\left(u_{1}\right)<s<\lambda_{k}\left(u_{1}\right)
\end{array}\right.
$$

Here

- $\left(u_{1}, u_{r}\right)$ are the values of u on the left and right side of S, respectively;
- $\lambda_{1}(u)<\lambda_{2}(u)<\cdots<\lambda_{n}(u)$ are the eigenvalues of $d f(u)$.

Now, we restrict ourselves to the p-sytems:

$$
\left\{\begin{array}{c}
v_{t}-u_{x}=0 \tag{PE}\\
u_{t}+p(v)_{x}=0
\end{array}\right.
$$

where

- $v=\frac{1}{\rho}$ is the specific volume;
- u is the velocity;
- P is the pressure, with $p^{\prime}<0, p^{\prime \prime}>0$.

Written as a system of conservation laws, (PE) has the form

$$
U_{t}+F(U)_{x}=0
$$

Where

$$
U=\binom{v}{u}, \quad F(U)=\binom{-u}{p(v)}
$$

Since the eigenvalues of $d F(U)$:

$$
\lambda_{1}=-\sqrt{-p^{\prime}(v)}<0<\sqrt{-p^{\prime}(v)}=\lambda_{2}
$$

are real and distinct, the system (PE) is hyperbolic.
The 2-shock of (PE) is then such as

$$
\left\{\begin{array}{c}
\lambda_{2}\left(U_{r}\right)<s \tag{*}\\
\lambda_{1}\left(U_{1}\right)<s<\lambda_{2}\left(U_{1}\right)
\end{array}\right.
$$

Now the problem states:
Given a state $U_{1}=\left(v_{1}, u_{1}\right)$, find the possible state $U_{r}=\left(v_{r}, u_{r}\right)$ so that U_{r} is connected to U_{1} by a 2-shock on the right.

We do this just by the Rankine-Hugoniot-like conditions:

$$
\left\{\begin{array}{c}
s\left(v_{r}-v_{1}\right)=-\left(u_{r}-u_{1}\right) \\
s\left(u_{r}-u_{1}\right)=p\left(v_{r}\right)-p\left(v_{1}\right)
\end{array}\right.
$$

Eliminating s from the these equations we obtain

$$
u_{r}-u_{1}= \pm \sqrt{\left(p\left(v_{1}\right)-p\left(v_{r}\right)\right)\left(v_{r}-v_{1}\right)} . \quad(* *)
$$

So our next goal is to determine the sign in (*).

- (*) implies that

$$
\sqrt{-p^{\prime}\left(v_{r}\right)}<\sqrt{-p^{\prime}\left(v_{1}\right)}
$$

thus

$$
\boldsymbol{v}_{\boldsymbol{r}}<\boldsymbol{v}_{1}
$$

- Then

$$
\left.\begin{array}{c}
(* *)_{1} \\
v_{r}<v_{1} \\
s>0
\end{array}\right\} \Rightarrow u_{1}<u_{r}
$$

- The sign thus is + .

Now the front-shock (or 2-shock) has the formula:
$S_{2}: u_{r}-u_{1}=\sqrt{\left(p\left(v_{1}\right)-p\left(v_{r}\right)\right)\left(v_{r}-v_{1}\right)}=s_{1}\left(v_{r} ; U_{1}\right), v_{1}<v_{r}$.
As pointed out before, S_{2} is star-likew.r.t. U_{1}. And the picture of the 2-shock is easily depicted.

Zujin Zhang
11-20, 2009

