Remarks on one component regularity for the Navier-Stokes equations III

Zujin Zhang

Oct. 12th, 2009

Department of Mathematic, Sun Yat-sen University,

510275, Guangzhou, P. R. China.

Email: uia.china@gmail.com

Abstract

We establish sufficient conditions for the regularity of solutions of the Navier-Stokes system based on one component of the velocity. It is proved that if $u_3 \in L^{s,r}$ with

$$\frac{2}{s} + \frac{3}{r} \le \frac{3}{4}$$

and $4 < r \leq \infty$, then the solution is regular.

1. Introduction and the main result

We continue our study in [1] of the one component regularity problem for Leray-Hopf weak solutions (u, p) of the three-dimensional incompressible Navier-Stokes equations (NS)

$$\begin{cases} \partial_t u + u \cdot \nabla u - \Delta u + \nabla p = 0; \\ div u = 0. \end{cases}$$

Indeed, the main result is as follows.

Theorem 1.1 Let u be a Leray-Hopf weak solution of (NS) with data $u_0 \in H^1(R^3)$, and $u_3 \in L^{s,r}$ with

$$\frac{2}{s} + \frac{3}{r} \le \frac{3}{4}, \qquad 4 < r \le \infty$$

Then u is actually regular.

The proof is similar to that in [1], so we just estimate the key term L_1 .

2. Proof of the main theorem

As in [1], we set $heta_0=rac{3}{4}$, and we have $J \leq C arepsilon L^{3/4} + C$.

Now we estimate $L\!_{\!\!1}$ more carefully.

$$\begin{split} L_{1} &\leq C \iint |\nabla \nabla_{h} u| |u| |\partial_{3} u| \\ &\leq C \int |\nabla \nabla_{h} u|_{2} |u|_{6} |\partial_{3} u|_{2}^{1/2} |\partial_{3} u|_{6}^{1/2} \\ &\left\{ \text{Holder inequality with } \frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{2}$$

 $\begin{cases} \text{Holder inequality with } \frac{4/3}{2} + \frac{1/2}{2} + \frac{1/6}{2} = 1 \end{cases} \\ \leq C \varepsilon J^2 L^{1/2} \\ \leq C \varepsilon L^{2 \cdot 3/4 + 1/2} + C \\ \{J \leq C \varepsilon L^{4/3} + C \} \\ \leq C \varepsilon L^2 + C \end{cases}$

For sufficiently small ε , we obtain $L \leq C$, thus $J \leq C$ also. The proof is complete.

3. Acknowledgement

The author would like to express his sincere gratitude to Professor Zhou from ZNU and Professor Kukavica from USC. This paper comes out of their inspiring papers.

4. A Note

Why I choose the font---Courier New? This is because I've read Leon Simon's << Lectures on Geometric Measure theory >>, and this is just the font he use. I feel awful first, but then like it very much as I suffer through.....

Worse than Zhou's, the result is still an exercise.

5. Reference

[1] Z. Zhang, Remarks on one component regularity for the Navier-Stokes equations, an exercise.