Remarks on one component regularity for the Navier-Stokes equations IV

Zujin Zhang

Oct. 12th, 2009

Department of Mathematic, Sun Yat-sen University, 510275, Guangzhou, P. R. China.

Email: <u>uia.china@gmail.com</u>

Abstract

We establish sufficient conditions for the regularity of solutions of the Navier-Stokes system based on one component of the velocity. It is proved that if $u_3 \in L^{s,r}$ with

$$\frac{2}{s} + \frac{3}{r} \le \frac{3}{4} + \frac{1}{2r}$$

and 10 / 3 < r \leq ∞ , then the solution is regular.

1. Introduction and the main result

We continue our study in [1] of the one component regularity problem for Leray-Hopf weak solutions (u, p) of the three-dimensional incompressible Navier-Stokes equations (NS)

$$\begin{cases} \partial_t u + u \cdot \nabla u - \Delta u + \nabla p = 0; \\ div u = 0. \end{cases}$$

Indeed, the main result is as follows.

Theorem 1.1 Let u be a Leray-Hopf weak solution of (NS) with data $u_0 \in H^1(R^3)$, and $u_3 \in L^{s,r}$ with

$$\frac{2}{s} + \frac{3}{r} \le \frac{3}{4} + \frac{1}{2r}, \qquad \qquad \frac{10}{3} < r \le \infty$$

Then u is actually regular.

The proof is similar to that in [1], so we just estimate the key terms J_3, L_1 .

2. Proof of the main theorem

As in [1], we need only to estimate J_3 , L_1 more carefully. For the term J_3 , we have:

$$\begin{aligned} J_{3} &\leq C \iint |u_{3}| |\partial_{3}u| |\nabla \nabla_{h}u| \\ &\leq C \int |u_{3}|_{r} |\partial_{3}u|_{2r/(r-2)} |\nabla \nabla_{h}u|_{2} \\ &\leq C \int |u_{3}|_{r} |\partial_{3}u|_{2}^{1-3/r} |\partial_{3}u|_{6}^{3/r} |\nabla \nabla_{h}u|_{2} \\ &\leq C \int |u_{3}|_{r} |\partial_{3}u|_{2}^{1-2/s-3/r} |\partial_{3}u|_{2}^{2/s} |\nabla \nabla_{h}u|_{2}^{2/r} |\nabla \partial_{3}u|_{2}^{1/r} |\nabla \nabla_{h}u|_{2} \\ &\leq C |u_{3}|_{s,r} |\partial_{3}u|_{2}^{1-2/s-3/r} |\partial_{3}u|_{\infty,2}^{2/s} |\nabla \nabla_{h}u|_{2,2}^{2/r+1} |\nabla \partial_{3}u|_{2,2}^{1/r} \\ &\leq C \varepsilon J^{1+2/r} L^{2/s+1/r} \end{aligned}$$

Thus

$$J \leq C \varepsilon L^{(2/s+1/r)/(1-2/r)} + C$$

Now we estimate L_1 as follows:

$$\begin{split} L_{1} &\leq C \iint |\nabla \nabla_{h} u| |u| |\partial_{3} u| \\ &\leq C \int |\nabla \nabla_{h} u|_{2} |u|_{6} |\partial_{3} u|_{2}^{1/2} |\partial_{3} u|_{6}^{1/2} \\ &\leq C \int |\nabla \nabla_{h} u|_{2} \left[|\nabla_{h} u|_{2}^{2/3} |\partial_{3} u|_{2}^{1/3} \right] |\partial_{3} u|_{2}^{1/2} \left[|\nabla \nabla_{h} u|_{2}^{1/3} |\nabla \partial_{3} u|_{2}^{1/6} \right] \\ &\leq C \int |\nabla \nabla_{h} u|_{2}^{4/3} |\nabla_{h} u|_{2}^{2/3} |\partial_{3} u|_{2}^{1/3} |\partial_{3} u|_{2}^{1/2} |\nabla \partial_{3} u|_{2}^{1/6} \\ &\leq C |\nabla \nabla_{h}|_{2,2}^{4/3} |\nabla_{h} u|_{\infty,2}^{2/3} |\partial_{3} u|_{\infty,2}^{1/3} |\partial_{3} u|_{2,2}^{1/2} |\nabla \partial_{3} u|_{2,2}^{1/6} \\ &\leq C \varepsilon J^{2} L^{1/2} \end{split}$$

The estimate on J gives

$$L_1 \leq C \varepsilon L^2 + C$$

For sufficiently small ε , we obtain $L \leq C$, thus $J \leq C$ also. The proof is complete.

3. Acknowledgement

The author would like to express his sincere gratitude to Professor Zhou from ZNU and Professor Kukavica from USC. This note comes out of their inspiring papers.

4. Reference

[1] Z. Zhang, Remarks on one component regularity for the Navier-Stokes equations, an exercise.