ON CRUM'S PROBLEM

A. S. Besicovitch*.

In this article I give a solution of the following problem of M. Crum.

What is the maximum number of convex polyhedra, non-overlapping and such that any pair of them have a common boundary of positive area?

The answer to the similar plane problem is "four" and it was expected that a finite, rather small number, ten or twelve, would be the answer to the above problem. I shall show that actually the answer is "infinity".

Take rectangular coordinate axes and in the vertical plane XOZ draw a polygonal line $A_0A_1A_2...$, from $A_0(1, 0, 0)$, above OX, convex downwards, of total length less than $\frac{1}{4}$ and such that the angle between the directions OX and A_nA_{n+1} is greater than $\frac{3}{4}\pi$ for any n.

Now take a sequence of positive numbers $\{\delta_n\}$ such that $\sum\limits_{1}^{\infty}\delta_n<\frac{1}{4}$. Join the point $B_0(0,\ 1,\ 0)$ to A_0 and take the point D_1 on B_0A_0 such that $B_0D_1=\delta_1$; join D_1 to A_1 and take the point D_2 on D_1A_1 such that $D_1D_2=\delta_2$; then join D_2 to A_2 and take the point D_3 on D_2A_2 such that $D_2D_3=\delta_3$, and so on. Denote by r_0 the plane XOY and by r_n , for $n=1,\ 2,\ 3,\ \dots$, the plane through $A_{n-1},\ D_n,\ A_n$. Let B_n and C_n be respectively the points of intersection of r_n with OY and OZ. It is easy to see that every B_n is on the positive half of the Y-axis.

Denote by S_{k+1} , k=0, 1, 2, ..., the polyhedron consisting of the points of the first octant that are not below any one of the planes $r_0, r_1, ..., r_k$ and not above the plane r_{k+1} .

If we denote by x^+ , y^+ the half-spaces $x \ge 0$, $y \ge 0$, by r_n^+ the half-space of points on and above r_n , and by r_n^- the half-space of points on or below r_n , then $S_{k+1} = x^+ y^+ r_0^+ r_1^+ \dots r_k^+ r_{k+1}^-$. Being the intersection of half-spaces, S_{k+1} is a convex polyhedron. By a direct inspection we see that the triangle $D_{k+1}A_{k+1}C_{k+1}$ belongs to the common boundary of S_{k+1} and S_{k+2} , and thus S_{k+1} and S_{k+2} satisfy the required condition. Denote the points of intersection of r_k , k > 2, with the lines B_0A_0 , D_1A_1 , D_2A_2 , ... by E_{0k} , E_{1k} , E_{2k} , ... respectively.

The triangle $A_1D_1A_0$ obviously forms a part of the surface of S_1 . We also have

$$\Delta A_1 D_1 A_0 \subset r_0^+ r_1^+ r_2^+.$$

^{*} Received 13 July, 1947; read 16 October, 1947.

The planes r_3 , r_4 , ..., r_k , ... meet the triangle $A_1D_1A_0$ in the lines D_2E_{03} , $E_{14}E_{04}$, ..., $E_{1k}E_{0k}$, ... respectively, and the part of $A_1D_1A_0$ to the left of $E_{1k}E_{0k}$ is in r_k^- , and the one to the right in r_k^+ ; whence

 $D_2 D_1 E_{03} \subset r_3^-, \quad E_{14} D_2 E_{03} E_{04} \subset r_3^+ r_4^-, \quad E_{15} E_{14} E_{04} E_{05} \subset r_3^+ r_4^+ r_5^-, \quad \dots,$ and, by (1),

$$D_2 D_1 \, E_{03} \subset S_3, \quad E_{14} \, D_2 \, E_{03} \, E_{04} \subset S_4, \quad E_{15} \, E_{14} \, E_{04} \, E_{05} \subset S_5, \quad \dots.$$

Thus S_1 has a common boundary of positive measure with any other S_k . By considering the triangles $A_2D_2A_1$, $A_3D_3A_2$, ... we shall come to a similar conclusion with respect to S_2 , S_3 ,

Thus any pair of polyhedra of the infinite sequence $\{S_k\}$ satisfy the required conditions.

Trinity College, Cambridge.

A SEQUENCE OF POLYHEDRA HAVING INTERSECTIONS OF SPECIFIED DIMENSIONS

R. RADOT.

1. M. Crum proposed the following problem. What is the maximum number of non-overlapping convex polyhedra in 3-space which have the property that any two have a two-dimensional intersection? Besicovitch‡ proved that the answer is infinity, by constructing an infinite sequence of non-overlapping convex polyhedra any two of which have a two-dimensional intersection. In the present note I generalize this result by constructing a sequence of polyhedra S_1, S_2, \ldots in n-space which have the property that, if $1 \le k \le \frac{1}{2}(n+1)$, any k of the S_m have an (n-k+1)-dimensional intersection. It is known that for n=1 and for n=2 the number $\frac{1}{2}(n+1)$ cannot be replaced by $\frac{1}{2}(n+1)+1$. All S_μ of our construction will lie in a fixed cube of side 2^{n+2} , and S_m , being the intersection of 2n+m+1 half-spaces, will be a convex polyhedron.

THEOREM. Let n be a positive integer. Let

(1)
$$0 < t_0 < t_1 < \dots; t_{\mu} < 1 \quad (\mu \geqslant 0).$$

[†] Received 18 August, 1947; read 16 October, 1947.

[‡] A. S. Besicovitch, Journal London Math. Soc., 22 (1947), 285-287.