小柯机器人

研究揭示人类大脑功能的几何约束
2023-06-05 15:26

近日,澳大利亚蒙纳士大学James C. Pang等研究人员揭示人类大脑功能的几何约束。该研究于2023年5月31日在线发表于国际一流学术期刊《自然》。

研究人员表示,大脑的解剖结构必然约束其功能,但具体如何约束仍不清楚。神经科学的经典和主导范式是,神经元的动态是由离散的、功能专门化的细胞群之间的相互作用驱动的,这些细胞群由复杂的轴突纤维阵列连接。然而,来自神经场理论的预测,即一个既定的模拟大规模大脑活动的数学框架,表明大脑的几何学可能代表了比复杂的区域间连接更基本的动态约束。

研究人员通过分析在自发和不同的任务诱发条件下获得的人类磁共振成像数据来证实了这些理论预测。具体来说,研究人员表明皮层和皮层下活动可以被理解为是由大脑几何学(即其形状)的基本共振模式的激发而产生的,而不是像经典假设那样由复杂的区域间连接模式产生的。然后,研究人员利用这些几何模式表明,超过10000个脑图的任务诱发激活并不像人们普遍认为的那样局限于焦点区域,而是激发了波长超过60毫米的全脑模式。最后,研究人员证实了几何学和功能之间的密切联系是由波状活动的主导作用所解释的预测,并表明波的动力学可以再现自发和诱发记录的许多典型的时空特性。

这些研究结果挑战了普遍的观点,并确定了以前未被重视的几何学在塑造功能方面的作用,正如全脑动力学的统一和物理原理模型所预测的那样。

附:英文原文

Title: Geometric constraints on human brain function

Author: Pang, James C., Aquino, Kevin M., Oldehinkel, Marianne, Robinson, Peter A., Fulcher, Ben D., Breakspear, Michael, Fornito, Alex

Issue&Volume: 2023-05-31

Abstract: The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1,2,3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4,5,6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain’s geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.

DOI: 10.1038/s41586-023-06098-1

Source: https://www.nature.com/articles/s41586-023-06098-1

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0