小柯机器人

间隙连接使神经回路不同步来稳定昆虫飞行
2023-05-30 11:08

近日,德国美茵茨大学Carsten Duch等研究人员合作发现,间隙连接使神经回路不同步来稳定昆虫飞行。相关论文于2023年5月24日在线发表在《自然》杂志上。

在包括电生理学、视生理学、果蝇遗传学和数学模型在内的实验-理论方法的基础上,研究人员确定了一个具有意想不到特性的小型化回路解决方案。中央模式生成(CPG)网络由通过电突触相互连接的运动神经元组成,与学说不同的是,它产生的网络活动在时间上是分散的,而不是在神经元之间同步的。实验和数学证据支持网络非同步化的通用机制,该机制依赖于弱电突触和耦合神经元的特定兴奋性动态。在小型网络中,电突触可以使网络活动同步或不同步,这取决于神经元的内在动力学和离子通道的组成。

在异步飞行CPG中,这种机制将无规律的前运动输入转化为具有固定细胞激活序列的定型神经元发射,进而确保稳定的翼搏力量,而且正如结果所显示的,在多个物种中是保守的。这些研究结果证明,在神经回路的动态控制中,电突触具有更广泛的功能多样性,并强调了在连接组学中检测电突触的意义。

据介绍,昆虫的异步飞行是60多万种动物使用的最普遍的动物运动形式之一。尽管对异步飞行的运动模式、生物力学和空气动力学有深刻的认识,但CPG神经网络的结构和功能仍不清楚。

附:英文原文

Title: Gap junctions desynchronize a neural circuit to stabilize insect flight

Author: Hrkey, Silvan, Niemeyer, Nelson, Schleimer, Jan-Hendrik, Ryglewski, Stefanie, Schreiber, Susanne, Duch, Carsten

Issue&Volume: 2023-05-24

Abstract: Insect asynchronous flight is one of the most prevalent forms of animal locomotion used by more than 600,000 species. Despite profound insights into the motor patterns1, biomechanics2,3 and aerodynamics underlying asynchronous flight4,5, the architecture and function of the central-pattern-generating (CPG) neural network remain unclear. Here, on the basis of an experiment–theory approach including electrophysiology, optophysiology, Drosophila genetics and mathematical modelling, we identify a miniaturized circuit solution with unexpected properties. The CPG network consists of motoneurons interconnected by electrical synapses that, in contrast to doctrine, produce network activity splayed out in time instead of synchronized across neurons. Experimental and mathematical evidence support a generic mechanism for network desynchronization that relies on weak electrical synapses and specific excitability dynamics of the coupled neurons. In small networks, electrical synapses can synchronize or desynchronize network activity, depending on the neuron-intrinsic dynamics and ion channel composition. In the asynchronous flight CPG, this mechanism translates unpatterned premotor input into stereotyped neuronal firing with fixed sequences of cell activation that ensure stable wingbeat power and, as we show, is conserved across multiple species. Our findings prove a wider functional versatility of electrical synapses in the dynamic control of neural circuits and highlight the relevance of detecting electrical synapses in connectomics.

DOI: 10.1038/s41586-023-06099-0

Source: https://www.nature.com/articles/s41586-023-06099-0

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0