小柯机器人

脊髓兴奋性中间神经元的神经递质表型转换调控脊髓损伤后的运动能力恢复
2022-05-15 13:51

比利时鲁汶大学Aya Takeoka团队发现,脊髓兴奋性中间神经元的神经递质表型转换调控脊髓损伤后的运动能力恢复。2022年5月6日出版的《自然—神经科学》杂志发表了这项成果。

研究人员发现成年脊髓损伤促使空间上的兴奋性中间神经元的神经递质转换为抑制性表型,进而促进与运动神经元接触的突触抑制。相反,新生儿脊髓损伤保持了谷氨酸间神经元的兴奋性表型,并导致突触发芽来促进兴奋。此外,模仿成年脊髓损伤后兴奋性中间神经元抑制性表型的基因操作会废除新生儿损伤小鼠的自主运动功能。相比之下,减弱这种抑制性表型能改善成年损伤后的运动能力。总之,这些数据表明,确定的兴奋性中间神经元的神经递质表型引导了脊髓损伤后的运动能力恢复。

据介绍,成年的严重脊髓损伤会导致病变部位以下不可逆转的瘫痪。然而,在刚出生时接受了完全胸腔损伤的成年啮齿类动物在没有大脑输入的情况下表现出熟练的后肢运动能力。脊髓如何实现如此惊人的可塑性仍是未知数。

附:英文原文

Title: Neurotransmitter phenotype switching by spinal excitatory interneurons regulates locomotor recovery after spinal cord injury

Author: Bertels, Hannah, Vicente-Ortiz, Guillem, El Kanbi, Khadija, Takeoka, Aya

Issue&Volume: 2022-05-06

Abstract: Severe spinal cord injury in adults leads to irreversible paralysis below the lesion. However, adult rodents that received a complete thoracic lesion just after birth demonstrate proficient hindlimb locomotion without input from the brain. How the spinal cord achieves such striking plasticity remains unknown. In this study, we found that adult spinal cord injury prompts neurotransmitter switching of spatially defined excitatory interneurons to an inhibitory phenotype, promoting inhibition at synapses contacting motor neurons. In contrast, neonatal spinal cord injury maintains the excitatory phenotype of glutamatergic interneurons and causes synaptic sprouting to facilitate excitation. Furthermore, genetic manipulation to mimic the inhibitory phenotype observed in excitatory interneurons after adult spinal cord injury abrogates autonomous locomotor functionality in neonatally injured mice. In comparison, attenuating this inhibitory phenotype improves locomotor capacity after adult injury. Together, these data demonstrate that neurotransmitter phenotype of defined excitatory interneurons steers locomotor recovery after spinal cord injury. Bertels et al. identify that spinal neurons switch neurotransmitter phenotype from excitation to inhibition after spinal cord injury. Manipulation of neurotransmitter phenotype reveals that maintaining excitatory phenotype is essential for locomotor recovery.

DOI: 10.1038/s41593-022-01067-9

Source: https://www.nature.com/articles/s41593-022-01067-9

Nature Neuroscience:《自然—神经科学》,创刊于1998年。隶属于施普林格·自然出版集团,最新IF:28.771
官方网址:https://www.nature.com/neuro/
投稿链接:https://mts-nn.nature.com/cgi-bin/main.plex


本期文章:《自然—神经科学》:Online/在线发表

分享到:

0