小柯机器人

替代性光合作用途径驱动藻类的二氧化碳浓缩机制
2022-04-30 10:10

法国艾克斯马赛大学Gilles Peltier课题组发现,替代性光合作用途径驱动藻类的二氧化碳浓缩机制。该项研究成果于2022年4月27日在线发表在《自然》杂志上。

研究人员表明,在绿藻莱茵衣藻中,循环电子流和O2光还原的联合作用,它们分别依赖于PGRL1和黄铁蛋白,产生了对二氧化碳浓缩机制(CCM)功能至关重要的低腔内pH值。研究人员认为,腔内质子被用于thylakoid bestrophin样运输器的下游,可能用于将碳酸氢盐转化为二氧化碳。研究人员进一步确定,从叶绿体到线粒体的电子流有助于为非叶绿体的无机碳运输器提供能量,可能是通过提供ATP。研究人员提出了一个向CCM提供能量的网络的综合观点,并描述了藻类细胞如何分配来自光合作用的能量来驱动不同的CCM过程。这些结果表明了将功能性藻类CCM转移到植物中以提高作物生产力的途径。
 
据悉,全球光合作用消耗的二氧化碳是人类净排放的十倍,而微藻类占了这一消耗的近一半。藻类光合作用的高效率依赖于在羧化酶RuBisCO催化部位的CCM,这加强了二氧化碳的固定。尽管许多参与无机碳运输和封存的细胞成分已被确认,但微藻如何提供能量以浓缩二氧化碳以对抗热力学梯度仍是未知数。
 
附:英文原文
 
Title: Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism

Author: Burlacot, Adrien, Dao, Ousmane, Auroy, Pascaline, Cuin, Stephan, Li-Beisson, Yonghua, Peltier, Gilles

Issue&Volume: 2022-04-27

Abstract: Global photosynthesis consumes ten times more CO2 than net anthropogenic emissions, and microalgae account for nearly half of this consumption1. The high efficiency of algal photosynthesis relies on a mechanism concentrating CO2 (CCM) at the catalytic site of the carboxylating enzyme RuBisCO, which enhances CO2 fixation2. Although many cellular components involved in the transport and sequestration of inorganic carbon have been identified3,4, how microalgae supply energy to concentrate CO2 against a thermodynamic gradient remains unknown4,5,6. Here we show that in the green alga Chlamydomonas reinhardtii, the combined action of cyclic electron flow and O2 photoreduction—which depend on PGRL1 and flavodiiron proteins, respectively—generate a low luminal pH that is essential for CCM function. We suggest that luminal protons are used downstream of thylakoid bestrophin-like transporters, probably for the conversion of bicarbonate to CO2. We further establish that an electron flow from chloroplast to mitochondria contributes to energizing non-thylakoid inorganic carbon transporters, probably by supplying ATP. We propose an integrated view of the network supplying energy to the CCM, and describe how algal cells distribute energy from photosynthesis to power different CCM processes. These results suggest a route for the transfer of a functional algal CCM to plants to improve crop productivity.

DOI: 10.1038/s41586-022-04662-9

Source: https://www.nature.com/articles/s41586-022-04662-9

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0