小柯机器人

研究揭示肠道渗透压变化的感觉表征和检测机制
2022-01-30 23:37

美国加州理工学院Yuki Oka课题组揭示肠道渗透压变化的感觉表征和检测机制。2022年1月26日,国际知名学术期刊《自然》在线发表了这一成果。

研究人员使用光学和电学记录结合遗传方法来观察了感觉神经节神经元的渗透压反应。肠道低渗刺激激活了一个专门的迷走神经元群体,与机械、高渗或营养敏感神经元不同。研究人员证明,低渗反应是由支配肝门区(HPA)的迷走神经传入所介导的,大多数水和营养物质是通过该区吸收的。消除该区域的感觉输入可选择性地取消低渗反应,但不包括迷走神经元的机械反应。前脑口渴神经元的记录和行为分析表明,HPA衍生的渗透压信号对前馈性口渴饱腹感和饮水终止是必需的。
 
值得注意的是,HPA支配的迷走神经传入者本身并不感知渗透压。相反,这些反应部分是由摄入水后分泌的血管活性肠肽介导的。总之,这些结果揭示了内脏低渗透压是一个重要的迷走神经感觉方式,肠道渗透压的变化被转化为激素信号,通过HPA途径调节口渴回路活动。
 
据了解,摄入的食物和水在吸收前会刺激口咽和胃肠区域的感觉系统。这些感觉信号以前馈的方式调节大脑食欲回路。新的证据表明,肠道内的渗透压感应在水摄入时迅速抑制口渴神经元。然而,仍然不清楚外围感觉神经元如何检测内脏渗透压的变化,以及它们如何调节口渴。
 
附:英文原文
 
Title: Sensory representation and detection mechanisms of gut osmolality change

Author: Ichiki, Takako, Wang, Tongtong, Kennedy, Ann, Pool, Allan-Hermann, Ebisu, Haruka, Anderson, David J., Oka, Yuki

Issue&Volume: 2022-01-26

Abstract: Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3,4,5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.

DOI: 10.1038/s41586-021-04359-5

Source: https://www.nature.com/articles/s41586-021-04359-5

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0