小柯机器人

研究揭示果蝇大脑活动、代谢和行为的偶联
2021-04-30 15:47

美国斯坦福大学Thomas R. Clandinin、Surya Ganguli等研究人员合作揭示果蝇大脑活动、代谢和行为的偶联。这一研究成果于2021年4月28日在线发表在国际学术期刊《自然》上。

研究人员将果蝇大脑的双光子显微镜与传感器结合起来,使传感器能够同时测量静止状态和活动状态下的神经活动和代谢流。研究人员证明神经活动驱动代谢流的变化,从而在可以跨越大脑网络测量的这些信号之间产生紧密的偶联。使用局部光遗传学扰动,研究人员证明,即使神经活动的瞬时增加也会导致胞质ATP的持续快速增加,这表明神经元新陈代谢可预测性地分配资源来预测未来活动的能量需求。

最后,这项研究表明,即使是最小限度的行为运动启动也会引起神经活动和能量代谢模式的大规模变化,从而揭示了大脑的广泛参与。由于神经活动和能量代谢之间的关系可能在进化上是古老的且高度保守,因此这项研究为使用代谢指标捕获神经活动的变化提供了重要基础。

据了解,跨越神经元网络的协调活动是许多物种中静止和活跃行为状态的标志。这些整体模式在几秒钟到几小时内改变了能量代谢,并且是广泛使用氧气消耗和葡萄糖摄取作为神经活动指标的基础。然而,尚不清楚神经活动的变化是否与行为相关的时间尺度上完整回路中的代谢流有因果关系。

附:英文原文

Title: Coupling of activity, metabolism and behaviour across the Drosophila brain

Author: Kevin Mann, Stephane Deny, Surya Ganguli, Thomas R. Clandinin

Issue&Volume: 2021-04-28

Abstract: Coordinated activity across networks of neurons is a hallmark of both resting and active behavioural states in many species1,2,3,4,5. These global patterns alter energy metabolism over seconds to hours, which underpins the widespread use of oxygen consumption and glucose uptake as proxies of neural activity6,7. However, whether changes in neural activity are causally related to metabolic flux in intact circuits on the timescales associated with behaviour is unclear. Here we combine two-photon microscopy of the fly brain with sensors that enable the simultaneous measurement of neural activity and metabolic flux, across both resting and active behavioural states. We demonstrate that neural activity drives changes in metabolic flux, creating a tight coupling between these signals that can be measured across brain networks. Using local optogenetic perturbation, we demonstrate that even transient increases in neural activity result in rapid and persistent increases in cytosolic ATP, which suggests that neuronal metabolism predictively allocates resources to anticipate the energy demands of future activity. Finally, our studies reveal that the initiation of even minimal behavioural movements causes large-scale changes in the pattern of neural activity and energy metabolism, which reveals a widespread engagement of the brain. As the relationship between neural activity and energy metabolism is probably evolutionarily ancient and highly conserved, our studies provide a critical foundation for using metabolic proxies to capture changes in neural activity.

DOI: 10.1038/s41586-021-03497-0

Source: https://www.nature.com/articles/s41586-021-03497-0

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0