小柯机器人

研究揭示生物能源植物柳枝适应气候的基因组机制
2021-01-28 14:13

美国哈德逊阿尔法生物技术研究所Jeremy Schmutz、John T. Lovell团队取得一项新突破。他们研究揭示了多倍体生物能源植物柳枝适应气候的基因组机制。相关论文于2021年1月27日在线发表在《自然》杂志上。

在本研究中,研究人员对多倍体生物能源植物柳枝(Panicum virgatum)庞大和复杂基因组进行了组装和注释。研究分析了柳枝732个重排基因型的生物量和存活率,这些基因型分布在横跨1800公里纬度的10个常见物种中,这些证据共同揭示了气候适应的广泛基因组特征。气候-基因-生物量的关联非常丰富,但在深度不同的基因库中却有很大的差异。

此外,研究还发现基因流通过从预先适应的北方基因库中渗入等位基因,加速了北方栖息地冰川后殖民时期的气候适应性。柳枝的多倍体性质还通过基因功能分级提高了其适应能力,因为非显性亚基因组的可遗传多样性水平得到了提高。除了研究气候适应模式以外,该基因组资源和基因-性状关联还为育种提供了必要工具,以提高柳枝的产量作为可持续生产的生物能源。

据悉,长期的气候变化和周期性极端环境威胁着粮食和燃料安全以及全球作物的生产力。尽管分子育种和适应性育种策略可以缓解气候压力的影响并提高作物的抗逆性,但这些方法仍需要足够了解与生产力和适应性有关的基因,而这方面的数据只限于少数经过充分研究的模型系统。

附:英文原文

Title: Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass

Author: John T. Lovell, Alice H. MacQueen, Sujan Mamidi, Jason Bonnette, Jerry Jenkins, Joseph D. Napier, Avinash Sreedasyam, Adam Healey, Adam Session, Shengqiang Shu, Kerrie Barry, Stacy Bonos, LoriBeth Boston, Christopher Daum, Shweta Deshpande, Aren Ewing, Paul P. Grabowski, Taslima Haque, Melanie Harrison, Jiming Jiang, Dave Kudrna, Anna Lipzen, Thomas H. Pendergast, Chris Plott, Peng Qi, Christopher A. Saski, Eugene V. Shakirov, David Sims, Manoj Sharma, Rita Sharma, Ada Stewart, Vasanth R. Singan, Yuhong Tang, Sandra Thibivillier, Jenell Webber, Xiaoyu Weng, Melissa Williams, Guohong Albert Wu, Yuko Yoshinaga, Matthew Zane, Li Zhang, Jiyi Zhang, Kathrine D. Behrman, Arvid R. Boe, Philip A. Fay, Felix B. Fritschi, Julie D. Jastrow, John Lloyd-Reilley, Juan Manuel Martnez-Reyna, Roser Matamala, Robert B. Mitchell, Francis M. Rouquette, Pamela Ronald, Malay Saha, Christian M. Tobias, Michael Udvardi, Rod A. Wing, Yanqi Wu, Laura E. Bartley, Michael Casler, Katrien M. Devos, David B. Lowry, Daniel S. Rokhsar, Jane Grimwood, Thomas E. Juenger, Jeremy Schmutz

Issue&Volume: 2021-01-27

Abstract: Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2,3,4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6—knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate–gene–biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene–trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.

DOI: 10.1038/s41586-020-03127-1

Source: https://www.nature.com/articles/s41586-020-03127-1

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0