小柯机器人

科学家发现调控小鼠迟钝的神经元
2020-06-12 23:31

美国哈佛大学Michael E. Greenberg、Sinisa Hrvatin等研究人员合作发现调控小鼠迟钝的神经元。这一研究成果于2020年6月11日在线发表在国际学术期刊《自然》上。

研究人员发现小鼠进入迟钝状态(一种空腹诱导的状态,其代谢率大大降低,体温低至20°C)时,下丘脑内侧和外侧视前区的神经元对其进行调节。研究人员,即使在没有热量限制的小鼠中,重新刺激前一次因迟钝激活的神经元足以启动迟钝的关键特征。在这些神经元中,研究人员确定了一组谷氨酸能的Adcyap1阳性细胞,其活性可准确确定小鼠何时启动和退出迟钝,而其抑制作用则破坏了迟钝进入、维持和唤醒的自然过程。
 
总之,这些研究结果揭示了小鼠下丘脑中特定的神经元群体,它们是迟钝核心调节因子。这项工作为未来探索调节极端体温过低和代谢异常状态的机制和回路奠定了基础,并开发了使用遗传途径来监测、启动、操纵和研究这些恒温生物学的方法。
 
据了解,吸热是通过持续的体内温度和代谢的稳态调节来实现的,是哺乳动物和禽类进化的特征。但是,当受到食物匮乏或恶劣的环境条件的挑战时,许多哺乳动物物种开始采取适应性的能量保存生存策略,包括迟钝和冬眠,在此过程中,它们的体温下降到远低于其体内稳态设定值。恒温哺乳动物如何启动和调节这些体温过低的状态,目前仍然未知。
 
附:英文原文

Title: Neurons that regulate mouse torpor

Author: Sinisa Hrvatin, Senmiao Sun, Oren F. Wilcox, Hanqi Yao, Aurora J. Lavin-Peter, Marcelo Cicconet, Elena G. Assad, Michaela E. Palmer, Sage Aronson, Alexander S. Banks, Eric C. Griffith, Michael E. Greenberg

Issue&Volume: 2020-06-11

Abstract: The advent of endothermy, which is achieved through the continuous homeostatic regulation of body temperature and metabolism1,2, is a defining feature of mammalian and avian evolution. However, when challenged by food deprivation or harsh environmental conditions, many mammalian species initiate adaptive energy-conserving survival strategies—including torpor and hibernation—during which their body temperature decreases far below its homeostatic set-point3,4,5. How homeothermic mammals initiate and regulate these hypothermic states remains largely unknown. Here we show that entry into mouse torpor, a fasting-induced state with a greatly decreased metabolic rate and a body temperature as low as 20°C6, is regulated by neurons in the medial and lateral preoptic area of the hypothalamus. We show that restimulation of neurons that were activated during a previous bout of torpor is sufficient to initiate the key features of torpor, even in mice that are not calorically restricted. Among these neurons we identify a population of glutamatergic Adcyap1-positive cells, the activity of which accurately determines when mice naturally initiate and exit torpor, and the inhibition of which disrupts the natural process of torpor entry, maintenance and arousal. Taken together, our results reveal a specific neuronal population in the mouse hypothalamus that serves as a core regulator of torpor. This work forms a basis for the future exploration of mechanisms and circuitry that regulate extreme hypothermic and hypometabolic states, and enables genetic access to monitor, initiate, manipulate and study these ancient adaptations of homeotherm biology.

DOI: 10.1038/s41586-020-2387-5

Source: https://www.nature.com/articles/s41586-020-2387-5

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0