评论详情页
hidden
陶勇 赞 +1
热力学只是一个唯象的理论,它的严格基础需要玻尔兹曼的统计物理学。玻尔兹曼统计物理学其实蕴含了丰富的数学结构,但是并没有被开发出来,比如,玻尔兹曼熵中的吉布斯佯谬,需要依赖量子力学的假设才能解决,其实这是因为玻尔兹曼分布里蕴含了一个极其精妙的数学结构,但是一直没有被人发现(因为物理学家一直以来没有考察统计物理学框架内内能、熵、粒子数、体积的全微分关系的严格性,只有数学家才会考虑),所以才会借助量子力学。平衡态统计物理学的坑很大,现在漏出的部分只是冰山一角。
我在Physica A(2018)是对这个方面的第一个工作Swarm intelligence in humans: A perspective of emergent evolution,有兴趣可以烧一下脑:https://www.sciencedirect.com/science/article/pii/S0378437118302231
熵这个概念中隐藏着更深的秘密。不过这要等到我下一篇论文来讨论。
2019-06-17 16:42
全部回复1 条回复
hidden
吴中祥 赞 +1
   哈!

     热力学是以系统内大量粒子微观动量、能量各相应平均值的函数关系式表达大量粒子的宏观特性规律,与统计无关。
    统计力学是以系统内给出总数为N的,同种粒子,在某2种相关物理量组成的“相宇”各“微元”中分布状态几率的表达式,当N足够大时,求得,其总和分布状态几率最大值,即得:最可几分布函数。从而,可由大量粒子各微观特性,计算得到各相应的宏观最大几率特性,就是该大量粒子的宏观特性。
    它们分别是采用不同的方法,分别给出大量粒子系统的平均或几率特性。
     有各自分别解决的不同特性,和需要注意的不同问题。
    此处只是物理学的统计力学,至于其它学科(例如:经济学)的统计,就须建立其相应的恰当“相宇”进行统计,而不能简单地与物理学的统计类比。

         
06-18 10:47
确定删除指定的回复吗?
确定删除本博文吗?