CZC的个人博客分享 http://blog.sciencenet.cn/u/CZC

博文

年终盘点:2019年神经活动记录十大基础研究进展

已有 1993 次阅读 2020-1-4 11:08 |个人分类:神经科学临床和基础|系统分类:科研笔记

 2019年神经活动记录十大基础研究进展


1. Cell—科学家开发下一代四色遗传编码性钙离子探针XCaMPs用于不同神经元类群的同步成像

英文摘要:

Todecipher dynamic brain information processing, current genetically encodedcalcium indicators (GECIs) are limited in single action potential (AP) detectionspeed, combinatorial spectral compatibility, and two-photon imaging depth. Toaddress this, here, we rationally engineered a next-generation quadricolor GECIsuite, XCaMPs. Single AP detection was achieved within 3-10 ms of spike onset,enabling measurements of fast-spike trains in parvalbumin (PV)-positiveinterneurons in the barrel cortex in vivo and recording three distinct (twoinhibitory and one excitatory) ensembles during pre-motion activity in freelymoving mice. In vivo paired recording of pre- and postsynaptic firing revealedspatiotemporal constraints of dendritic inhibition in layer 1 in vivo, betweenaxons of somatostatin (SST)-positive interneurons and apical tufts dendrites ofexcitatory pyramidal neurons. Finally, non-invasive, subcortical imaging usingred XCaMP-R uncovered somatosensation-evoked persistent activity in hippocampalCA1 neurons. Thus, the XCaMPs offer a critical enhancement of solution space instudies of complex neuronal circuit dynamics.

参考文献:

Inoueet al (2019). Rational Engineering of XCaMPs, a Multicolor GECI Suite for InVivo Imaging of Complex Brain Circuit Dynamics. Cell. 2019 May16;177(5):1346-1360.e24.

 

2.Science—科学家成功给小鼠大脑中插入了幻觉:皮层特异的神经元动力学驱动小鼠的认知决策

英文摘要:

Perceptualexperiences may arise from neuronal activity patterns in mammalian neocortex. We probed mouseneocortex during visual discrimination using a red-shifted channelrhodopsin(ChRmine, discovered through structure-guided genome mining) alongsidemultiplexed multiphoton-holography (MultiSLM), achieving control ofindividually specified neurons spanning large cortical volumes with millisecondprecision. Stimulating a critical number of stimulus-orientation-selectiveneurons drove widespread recruitment of functionally related neurons, a processenhanced by (but not requiring) orientation-discrimination task learning.Optogenetic targeting of orientation-selective ensembles elicited correctbehavioral discrimination. Cortical layer-specific dynamics were apparent, asemergent neuronal activityasymmetrically propagated from layer 2/3 to layer 5, and smaller layer 5ensembles were as effective as larger layer 2/3 ensembles in elicitingorientation discrimination behavior. Population dynamics emerging afteroptogenetic stimulation both correctly predicted behavior and resembled naturalinternal representations of visual stimuli at cellular resolution over volumesof cortex.

参考文献:

Marshelet al (2019). Cortical layer-specific critical dynamics triggering perception. Science.2019 Aug 9;365(6453).

 

3.Cell—关系好不好,看一看大脑活动就知道:科学家在小鼠社交性行为的神经元同步活动方面取得了突破性进展

英文摘要:

Socialinteractions involve complex decision-making tasks that are shaped by dynamic,mutual feedback between participants. An open question is whether and howemergent properties may arise across brains of socially interacting individualsto influence social decisions. By simultaneously performing microendoscopiccalcium imaging in pairs of socially interacting mice, we find that animalsexhibit interbrain correlations of neural activityin the prefrontal cortex that are dependent on ongoing social interaction. Activity synchrony arises from two neuronal populations that separately encode one's ownbehaviors and those of the social partner. Strikingly, interbrain correlationspredict future social interactions as well as dominance relationships in acompetitive context. Together, our study provides conclusive evidence forinterbrain synchrony in rodents, uncovers how synchronization arises from activity at the single-cell level, and presents a rolefor interbrain neural activity coupling as aproperty of multi-animal systems in coordinating and sustaining socialinteractions between individuals.

参考文献:

Kingsburyet al (2019). Correlated Neural Activity and Encoding of Behavior across Brainsof Socially Interacting Animals. Cell. 2019 Jul 11;178(2):429-446.e16.

 

4.Nature—复杂动力学的重要作用:科学家揭示了运动皮层短期记忆引导未来运动的吸引子动力学原理

英文摘要:

Short-termmemories link events separated in time, such as past sensation and futureactions. Short-term memories are correlated with slow neural dynamics,including selective persistent activity, which can be maintained over seconds.In a delayed response task that requires short-term memory, neurons in themouse anterior lateral motor cortex (ALM) show persistent activity thatinstructs future actions. To determine the principles that underlie thispersistent activity, here we combined intracellular and extracellular electrophysiology with optogenetic perturbations andnetwork modelling. We show that during the delay epoch, the activity of ALMneurons moved towards discrete end points that correspond to specific movementdirections. These end points were robust to transient shifts in ALM activitycaused by optogenetic perturbations. Perturbations occasionally switched thepopulation dynamics to the other end point, followed by incorrect actions. Ourresults show that discrete attractor dynamics underlie short-term memoryrelated to motor planning.

参考文献:

Inagakiet al (2019). Discrete attractor dynamics underlies persistent activity in thefrontal cortex. Nature. 2019 Feb;566(7743):212-217.

 

5.Science—比CNO更特异更高效:科学家开发新的化学遗传系统药物uPSEMs用于神经元的激活和抑制

英文摘要:

Chemogenetics enables noninvasive chemical control over cellpopulations in behaving animals. However, existing small-molecule agonists showinsufficient potency or selectivity. There is also a need for chemogeneticsystems compatible with both research and human therapeutic applications. Wedeveloped a new ion channel-based platform for cell activation and silencingthat is controlled by low doses of the smoking cessation drug varenicline. Wethen synthesized subnanomolar-potency agonists, called uPSEMs, with highselectivity for the chemogenetic receptors. uPSEMs and their receptors werecharacterized in brains of mice and a rhesus monkey by in vivo electrophysiology, calcium imaging, positron emissiontomography, behavioral efficacy testing, and receptor counterscreening. Thisplatform of receptors and selective ultrapotent agonists enables potentialresearch and clinical applications of chemogenetics.

参考文献:

Magnuset al (2019). Ultrapotent chemogenetics for research and potential clinicalapplications. Science. 2019 Apr 12;364(6436). pii: eaav5282.

 

6.Science—科学家开发新型遗传编码性电压探针Voltron,可用于小鼠、斑马鱼和果蝇的在体神经元活动记录

英文摘要:

Geneticallyencoded voltage indicators (GEVIs) enable monitoring of neuronalactivity at high spatial and temporal resolution.However, the utility of existing GEVIs has been limited by the brightness andphotostability of fluorescent proteins and rhodopsins. We engineered a GEVI,called Voltron, that uses bright and photostable synthetic dyes instead of protein-basedfluorophores, thereby extending the number of neurons imaged simultaneously invivo by a factor of 10 and enabling imaging for significantly longer durationsrelative to existing GEVIs. We used Voltron for in vivo voltage imaging inmice, zebrafish, and fruit flies. In the mouse cortex, Voltron allowedsingle-trial recording of spikes and subthreshold voltage signals from dozensof neurons simultaneously over a 15-minute period of continuous imaging. Inlarval zebrafish, Voltron enabled the precise correlation of spike timing withbehavior.

参考文献:

Abdelfattahet al (2019). Bright and photostable chemigenetic indicators for extended invivo voltage imaging. Science. 2019 Aug 16;365(6454):699-704.

 

7.Science—Delta波的功能被首次阐明:Delta通过隔离皮层计算进而促进记忆巩固

英文摘要:

Deltawaves have been described as periods of generalized silence across the cortex,and their alternation with periods of endogenous activityresults in the slow oscillation of slow-wave sleep. Despite evidence that deltawaves are instrumental for memory consolidation, their specific role inreshaping cortical functional circuits remains puzzling. In a rat model, wefound that delta waves are not periods of complete silence and that theresidual activity is not mere neuronal noise. Instead, cortical cells involved inlearning a spatial memory task subsequently formed cell assemblies during deltawaves in response to transient reactivation of hippocampal ensembles duringripples. This process occurred selectively during endogenous or induced memoryconsolidation. Thus, delta waves represent isolated cortical computationstightly related to ongoing information processing underlying memoryconsolidation.

参考文献:

Todorovaet al (2019). Isolated cortical computations during delta waves support memoryconsolidation.

Science.2019 Oct 18;366(6463):377-381.

 

8.Nat Nanotechnol—纳米技术大显身手:科学家开发新型纳米晶体管探针用于高效神经元细胞内记录

英文摘要:

Newtools for intracellular electrophysiology thatpush the limits of spatiotemporal resolution while reducing invasiveness couldprovide a deeper understanding of electrogenic cells and their networks intissues, and push progress towards human-machine interfaces. Althoughsignificant advances have been made in developing nanodevices for intracellularprobes, current approaches exhibit a trade-off between device scalability andrecording amplitude. We address this challenge by combining deterministicshape-controlled nanowire transfer with spatially definedsemiconductor-to-metal transformation to realize scalable nanowire field-effecttransistor probe arrays with controllable tip geometry and sensor size, whichenable recording of up to 100 mV intracellular action potentials from primaryneurons. Systematic studies on neurons and cardiomyocytes show that controllingdevice curvature and sensor size is critical for achieving high-amplitudeintracellular recordings. In addition, this device design allows formultiplexed recording from single cells and cell networks and could enablefuture investigations of dynamics in the brain and other tissues.

参考文献:

Zhaoet al (2019). Scalable ultrasmall three-dimensional nanowire transistor probesfor intracellular recording.  NatNanotechnol. 2019 Aug;14(8):783-790.

 

9. Cell—科学家开发出新型电压探针ASAP3,可用于清醒活动小鼠的实时双光子成像

英文摘要:

Opticalinterrogation of voltage in deep brain locations with cellular resolution wouldbe immensely useful for understanding how neuronal circuits processinformation. Here, we report ASAP3, a genetically encoded voltage indicatorwith 51% fluorescence modulation by physiological voltages, submillisecondactivation kinetics, and full responsivity under two-photon excitation. We alsointroduce an ultrafast local volume excitation (ULoVE) method forkilohertz-rate two-photon sampling in vivo with increased stability andsensitivity. Combining a soma-targeted ASAP3 variant and ULoVE, we showsingle-trial tracking of spikes and subthreshold events for minutes in deeplocations, with subcellular resolution and with repeated sampling over days. Inthe visual cortex, we use soma-targeted ASAP3 to illustrate cell-type-dependentsubthreshold modulation by locomotion. Thus, ASAP3 and ULoVE enable high-speedoptical recording of electrical activity in genetically defined neurons at deeplocations during awake behavior.

参考文献:

Villetteet al (2019). Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator inAwake Behaving Mice. Cell. 2019 Dec 12;179(7):1590-1608.e23.

 

10.Nature—科学家开发出新型电压探针SomArchon,可用于清醒活动小鼠的神经元集群活动成像

英文摘要:

Alongstanding goal in neuroscience has been to image membrane voltage across apopulation of individual neurons in an awake, behaving mammal. Here we describea genetically encoded fluorescent voltage indicator, SomArchon, which exhibitsmillisecond response times and is compatible with optogenetic control, andwhich increases the sensitivity, signal-to-noise ratio, and number of neuronsobservable several-fold over previously published fully genetically encodedreagents1-8. Under conventional one-photon microscopy, SomArchonenables the routine population analysis of around 13 neurons at once, inmultiple brain regions (cortex, hippocampus, and striatum) of head-fixed, awake,behaving mice. Using SomArchon, we detected both positive and negativeresponses of striatal neurons during movement, as previously reported by electrophysiology but not easily detected using moderncalcium imaging techniques9-11, highlighting the power of voltageimaging to reveal bidirectional modulation. We also examined how spikes relateto the subthreshold theta oscillations of individual hippocampal neurons, withSomArchon showing that the spikes of individual neurons are more phase-lockedto their own subthreshold theta oscillations than to local field potentialtheta oscillations. Thus, SomArchon reports both spikes and subthresholdvoltage dynamics in awake, behaving mice.

参考文献:

Piatkevichet al (2019). Population imaging of neural activity in awake behaving mice. Nature.2019 Oct;574(7778):413-417.


2019年十大研究进展名录

1. 年终盘点:2019年帕金森病十大基础研究进展

2. 年终盘点:2019年帕金森病十大临床研究进展

3. 年终盘点:2019年阿尔茨海默病十大基础研究进展

4. 年终盘点:2019年阿尔茨海默病十大临床研究进展

5. 年终盘点:2019年神经科学领域十大基础研究进展

6. 年终盘点:2019年抑郁症领域十大基础研究进展(一半来自中国)

7. 年终盘点:2019年脑血管病领域十大基础研究进展

8. 年终盘点:2019年神经炎症领域十大基础研究进展


2018年十大研究进展名录

1.盘点2018年阿尔茨海默病十大研究突破

2.盘点2018年帕金森病十大研究突破

3. 盘点2018年神经科学二十大研究突破

4. 盘点2018年渐冻症(ALS)十大研究进展

5. 盘点2018年全球脑卒中十大研究进展

6. 盘点2018年神经影像十大研究进展

7. 盘点2018年神经炎症领域的十大研究突破

8. 盘点2018年神经变性痴呆十大研究突破

9. 2018年神经科学“学习和记忆”领域十大研究进展

10. 2018年抑郁症领域的十大研究突破

11. 2018年痛觉和疼痛领域的十大研究突破

12. 2018年的神经干细胞研究十大研究进展

13. 2018年的神经干细胞研究十大研究进展

14. 2018年的十大睡眠研究突破

15. 2018年“衰老和长生不老”领域的十大研究突破

16. 2018年自闭症领域的十大研究突破


欢迎加入60个“神经科学临床和基础社群”

1、神经科学临床和基础主群(500人)已满;

2、神经科学临床和基础Alzheimer亚群;

3、神经科学临床和基础Parkinson亚群;

4、神经科学临床和基础cerebrovascular亚群;

5、神经科学临床和基础Depression亚群;

6、神经科学临床和基础Movement disorders亚群;

7、神经科学临床和基础Neuroimmunology亚群;

8、神经科学临床和基础Psychiatry亚群;

9、神经科学临床和基础Neuroimaging亚群;

10、神经科学临床和基础Neurogenetics亚群;

11、神经科学临床和基础Neurodegeneration亚群;

12、神经科学临床和基础Epilepsy亚群;

13、神经科学临床和基础Sleep亚群;

14、神经科学临床和基础Neural Development亚群;

15、神经科学临床和基础Electrophysiology亚群;

16、神经科学临床和基础Neural circuits亚群;

17、神经科学临床和基础神经调控和脑机接口亚群;

18、神经科学临床和基础人工智能亚群;

19、神经科学临床和基础重大疾病和疑难病亚群;

20、神经科学临床和基础衰老和永生亚群;

21、神经科学临床和基础周围神经病群;

22、神经科学临床和基础神经肌肉疾病群;

23、神经科学临床和基础视觉系统研究群;

24、神经科学临床和基础疼痛研究群;

25、神经科学临床和基础Emotion研究群;

26、神经科学临床和基础意识研究群;

27、神经科学临床和基础Learning & Memory亚群;

28、神经科学国自然基金申请交流群;

29、神经科学ALS/FTD交流群;

30、神经科学脑外伤和脊髓外伤研究群;

31、神经科学儿科神经病学交流群;

32、神经科学Autism & ADHD研究群;

33、神经科学大数据和组学研究群;

34、神经科学非编码RNA研究群;

35、神经科学schizophrenia研究群;

36、神经科学Non-human primate研究群;

37、神经科学神经损伤与修复研究群;

38、神经科学Epigenetics研究群;

39、神经科学神经介入和静脉溶栓亚群;

40、神经科学计算神经科学亚群;

41、神经科学基因治疗交流群;

42、神经科学细胞治疗交流群;

43、神经科学纳米药物治疗交流群;

44、神经科学中医药治疗交流群;

45、神经科学免疫调节治疗交流群;

46、神经科学类器官和类脑研究交流群;

47、神经科学语言研究交流群;

48、神经科学深度学习和神经网络交流群;

49、神经科学类神经元和类脑器件设计交流群;

50、神经科学半人半机器人交流群;

51、神经科学感染性疾病研究群;

52、神经科学神经系统肿瘤研究群;

53、神经科学星型和小胶质细胞研究群;

54、神经科学神经外科研究群;

55、神经科学系统论和复杂性研究交流群;

56、神经科学脑肠轴和Microbiota交流群;

57、神经科学虚拟现实、增强现实和混合现实交流群;

58、神经科学临床试验和流行病学研究交流群;

59、神经科学单细胞测序研究交流群;

60、神经科学蛋白质解析交流群。

如果想入群,请加我微信(qingyierjing),并回复要加入的群,我会将您拉入群中。


20个神经科学领域的突破可能获得诺贝尔奖

1. 意识研究:意识的本质、组成、运行机制及其物质载体;不同意识层次的操控和干预,意识障碍性疾病的治疗。

2. 学习和记忆的机制及其调控:记忆的形成和消退机制,记忆的人为移植和记忆的人为消除等;

3. 痴呆研究:阿尔茨海默病的机制和治疗研究,血管性痴呆、额颞叶痴呆、路易体痴呆的机制研究和治疗。

4. 睡眠和睡眠障碍的机制和干预研究。

5. 情绪研究:喜、怒、哀、恐等基本情绪的机制和相关疾病的治疗。

6. 计算和逻辑推理的神经科学基础研究。

7. 语言的神经科学基础研究。

8. 视觉图像形成和运用的神经科学基础研究。

9. 创造力、想象力和艺术文学创造的神经基础研究。

10. 痛觉的神经科学基础及其干预研究

11. 性行为研究:性行为的神经科学基础研究和性行为的调控和干预。

12. 脑和脊髓损伤的机制及其干预研究,包括脑卒中、脊髓损伤机制研究,神经干细胞移植研究,新型神经修复技术,神经康复技术。

13. 精神类疾病的机制和干预研究:自闭症、精分、抑郁症、智能障碍、药物成瘾等;

14. 运动神经元病等神经变性病机制研究及其干预。

15. 衰老的机制和永生研究,包括大脑衰老的机制和寿命延长研究。

16. 神经系统遗传病的机制研究及基因治疗。

17. 神经操纵和调控技术:光遗传技术、药物遗传技术、基因编辑技术、经颅磁刺激、深部脑刺激和电刺激等。

18. 脑组织兼容性电子微芯片及脑机互动装置研究,包括脑机接口、神经刺激芯片、记忆存储芯片,意识存储芯片,人脑非语言互动装置等。

19. 半人半机器人的设计、完善和修复技术:包括任何机械肢体的人类移植,大脑移植入机器体内等。

20. 新型大脑成像和神经元活动记录技术:高分辨率成像技术、大型电极微阵列技术等。





https://wap.sciencenet.cn/blog-661795-1212832.html

上一篇:年终盘点:2019年神经炎症领域十大基础研究进展​
下一篇:年终盘点:2019年ALS/FTD十大基础研究进展
收藏 IP: 170.140.104.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-2 12:04

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部