After50的个人博客分享 http://blog.sciencenet.cn/u/After50

博文

金属矿山的安全与环境科技发展问题研究

已有 5620 次阅读 2013-1-5 09:47 |个人分类:安全科学理论|系统分类:论文交流| 科技发展, 金属矿山, 安全与环境, 问题研究

金属矿山的安全与环境科技发展问题研究

【摘  要】为了帮助制定金属矿山科技和安全与环境的发展规划,采用统计分析和比较研究等方法,从宏观的视角,分析了金属矿山安全与环境现状和问题,以及国内外高校的研究方向。研究结果看出,由于金属矿山的开采技术条件越来越复杂,矿石回采的工艺技术多种多样,我国金属矿山有很多安全与环境科学技术问题丞待解决;国内外采矿工程学科的研究方向大都围绕矿山开采与安全环境的实用工程技术问题而确立的,很超前的前瞻研究与很基础的、很边缘的和很有想象力的研究极少。我国应明确未来中长期金属矿山资源领域的重大科技领域和关键技术,更加重视和加强金属矿山科技和安全与环境的研究及其投入。

【关键词】金属矿山;安全;环境;科技问题;评述

 

资源-经济-环境相协调的研究,首先要把握国家未来经济社会发展的资源需求,把握世界矿产资源开发创新的发展趋势,并把重点放在关系到国家未来发展战略方向和世界资源有可能发生重大突破的领域。当今世界,人口的增长,发展中国家工业化现代化进程的加快,使全球资源消费总量进一步增加,尽管全球性经济危机导致资源价格出现大幅波动,但资源稀缺的态势不会改变。资源开发的前瞻研究,不仅要研究如何高效清洁利用好矿产资源,如何加快开发利用可再生资源,更要把握世界资源生产与消耗的发展趋势,把握世界资源发展的态势。为了实现资源-经济-环境相协调的矿产资源可持续利用,要解决一系列关键的资源开发问题,包括可再生资源的开发和酝酿新的技术突破及其带来的安全与环境问题等[1-8]

1我国金属矿产开发的安全与环境科技问题

金属和非金属矿产资源开发是国民经济的基础产业。我国约有80%的工业原材料、70%的农业生产资料都取自于矿物资源。在我国,开发矿产资源已成为150个城市支柱产业,直接就业数百万人,带动就业人数几千万,年产值高达数千亿元。随着矿产资大规模的持续开发,资源储量逐年减少,我国大型金属露天矿已经所剩无几,地下矿山大批转入深部开采,有的已面临关闭状态;未来10~15年内,我国将有三分之一的大中型有色金属矿山的开采深度达到或超过1000m。深部开采和海洋开采是矿业发展的必然趋势,它是世界矿业发展的前沿,对于这一新的特殊环境下的矿床开采,有许许多多的新的安全与环境科学技术难题,例如[1,8]

1)深部矿岩体开挖后,原岩应力平衡遭到破坏,应力重新分布,巷道或采场周围的岩石发生变形、破坏,甚至出现岩爆等多种动力灾害。由于开采范围和采掘空间状态随生产推进而不断变化,矿岩重复受到工程扰动,岩层发生变形、移动和破坏,其发生机理难于认识,灾害的发生难以预测,因此,安全条件严重恶化,事故频发。

2)金属矿山开采行业是高风险行业,地下矿山由于冒顶、爆破、振动、中毒、突水、火灾、矿石自燃等原因引起的重大伤亡事故时有发生。金属矿山不但事故时有发生,开采过程中所伴随着的噪声、粉尘、辐射和光等多种污染,导致多种职业病的发生;而且发病率高、发病周期短、致死致残率高,危害人数众多。

3)伴随深部开采而来的是原岩温度不断升高,致使开采与掘进工作面的温度逐步升高,热害日益严重。国外20 世纪5060年代,部分深部开采矿山就已经显现出较为严重的热害问题,现已从局部发展成为普遍现象,我国大部分矿井不久将进入一、二级热害区,这种高温矿井,井下无法作业。高温环境下作业的工人,体能迅速下降,工作效率低,易出现中暑、热晕,还可能诱发神经中枢系统失调等疾病,致使事故频发。

4)金属矿床开采引起地表破坏、岩石裸露、水土流失、河流淤塞,严重破坏矿区生态环境。金属矿地下开采常常破坏地下水系;采矿、选矿过程中,大量废水排入河流,造成河流、湖泊严重污染;在开采、装卸、运输的过程中,产生大量矿尘,危害人体健康;矿山排出的大量废石和尾矿,不仅占地面积大,而且往往使矿区成为不毛之地。

5)我国的金属矿山开采活动产生大量污染物,包括:废气、粉尘、酸性水(矿坑水、选矿及尾矿池水等)和重金属有害元素。大量重金属及有毒、有害元素(如铜、铅、锌、砷、镉、六价铬、汞、氰化物)以及悬浮物等,是矿产资源开发引起环境问题的重要原因,基于其污染的危害性和广泛性,重金属超过一定标准的尾矿等废弃物,已列入国家危险废物名录。

6)海洋资源开发,甚至月球资源开开发,其带来的安全与环境问题更是难以想象,需要有极为超前的科学研究储备。

由上可知,开展金属矿山安全与环境科技发展的前瞻性研究,具有重大的理论和实际意义。其研究成果,对实现我国金属矿山安全、高效、绿色的可持续发展,建立具有我国金属矿产资源特点的资源安全开发创新体系,有重大的现实意义;对部署金属资源安全、绿色开采的基础性、战略性、前瞻性和系统性研究与开发,研发、掌握矿业安全与环境的核心科学技术和先进设备研发的集成能力,使我国金属资源安全环保开采进入世界前列,具有重大的战略意义[1, 8, 12]

2我国金属矿山安全生产现状与问题

金属采矿业是对经济社会发展具有重大影响的资源性和基础性产业,是为国民经济增长、人民生活改善和社会文明发展提供原材料的支柱产业。改革开放以来,我国金属采矿业产量持续增长,矿产资源市场需求强劲,重要矿产消费持续增长。

目前全国共有金属矿山近万座,大、中、小型矿山分别约占金属矿山总数的0.58%2.36%96.9%。我国金属矿山的基本特点:一是数量大;二是小型矿山比例极高;三是矿种多,金属矿山涉及100多种矿种;四是分布散,因矿种数量多、成矿构造区别大,全国有30个省(区、市)都有金属矿山;五是基础差,特别是小型矿山因安全投入不足、技术力量不够等因素,安全基础十分薄弱;六是人员总体素质低,金属矿山从业人员中农民工占有一半以上的比例。

而且,金属采矿业带来了诸多安全与环境问题,仅金属矿尾矿库而言,据国家安全生产监督管理总局组织调查的统计结果,全国尾矿库有危库284座、险库348座、病库1466座,危、险、病库占总库数的19.9%[9]

 十一期间,在经济快速发展的同时,全国金属矿山安全生产形势总体稳定,事故起数和死亡人数逐年下降,金属矿山安全生产工作取得了明显成效。(1)各省(区、市)都建立了安全监管机构,基本形成了省、市、县三级安全监管体系,金属矿山重点乡镇建立了安全监管站。(2)初步建立了金属矿山安全法规体系,为促进金属矿山安全生产规范化、制度化提供了基本依据。(3)充分利用安全许可制度,严把金属矿山安全准入关。(4)金属矿山整顿关闭、尾矿库和地下矿山机械通风等专项整治取得了阶段性成果。

据国家安全生产监督管理总局组织调查的统计结果,近年我国金属矿山每年事故死亡人数约为1500~2000人。金属矿山企业重大以上事故也时有发生。上述事故呈现的基本特征:一是中西部地区和矿业大省为事故集中、高发区,十一期间,云南、湖南、河北等7省(区、市)事故起数和死亡人数占全国金属矿山事故起数和死亡人数的50%以上;二是事故的主要类型为物体打击、高处坠落、坍塌与片帮冒顶、放炮及中毒窒息等,该六类事故的起数和死亡人数分别占事故总数的80%以上;三是非法违法生产行为造成的事故比例较高,占总数的50%以上;四是中毒窒息事故死亡人数较多,平均每起死亡2.5人,是其他事故类型的2倍,不少中毒窒息事故都因施救不当造成事故扩大。

事故的主要原因集中表现为:一是金属矿山地质条件复杂,作业环境不良,受到采空区塌陷、透水、地压活动、高温等多种灾害的威胁;二是非法违规生产行为大量存在,如金属矿山的较大事故中涉嫌非法开采的事故约占较大事故总起数的48.9%和死亡总人数的49.7%;三是矿山企业主体责任不落实,安全投入不足,安全保障能力差,特别是小型矿山先天设计不足或无正规设计,开采工艺、技术装备落后,无法保证安全生产;四是缺乏采矿技术支撑力量,盲目生产,隐患排查与治理的技术力量不足;五是员工安全素质和安全意识差,三违现象严重,因违反操作规程和劳动纪律发生事故的死亡人数平均占金属矿山总死亡人数的30.89%。六是金属矿山应急救援工作仍是薄弱环节,多起中毒窒息事故都因盲目施救、处置不当造成事故扩大。

当前,全社会高度关注安全生产,形成了良好的舆论氛围,促使企业重视安全生产管理,随着经济社会的发展,企业安全生产投入逐年加大,不断改善安全生产条件,等等,这些有利因素为金属矿山安全生产工作带来了难得的发展机遇。但是,金属矿山领域也面临着严峻形势与挑战。

1)随着经济社会的发展,以人为本的思想已经深入人心,时代对金属矿山安全生产提出了更高的要求,遏制重特大事故的发生,降低事故总量是社会高度关注的热点问题。

2)目前仍然是我国经济社会发展的关键时期,矿产资源需求快速增长,但在国际矿业垄断企业的操控下,对我国短缺的金属矿产品进口价格受到很大影响,因此,我国将加大短缺矿产资源开发的投入,金属矿山产业增长势头强劲,由此也加大了金属矿山安全生产压力。

3)当前金属矿山因规模小、投入不足致使安全生产保障能力差、安全管理薄弱、企业人员安全素质低、安全生产机制建设落后、法制和标准建设滞后等等,这些问题在短时期内尚难得到根本转变,将继续制约金属矿山的安全生产。

因此,必须充分认识金属矿山安全生产工作的长期性、艰巨性、复杂性和紧迫性,要紧密结合经济结构战略性调整,淘汰落后产能,统筹规划,突出重点,采取行之有效的措施,逐步建立金属矿山安全生产长效机制,推动金属矿山安全发展。

3我国金属矿山的环境现状与问题

目前我国有矿业城市(镇)400多座。据统计,我国80%以上的工业原料来自于地下矿产资源。目前全国共发现矿产170种,在已查明的矿产资源总量中有20多种矿产的查明储量居世界前列。铁主要分布在东北、华北和西南;铜主要分布在西南、西北、华东;铅锌矿遍布全国;锡、钼、锑稀土矿主要分布在华南、华北;金银矿分布在全国;磷矿以华南为主[1]

金属采矿业在对矿产资源进行开发与利用时,不可避免地对环境带来许多负面影响和灾害问题。金属矿产资源开采方式主要包括露天开采、地下开采、海洋开采和特殊开采(包括浸出、溶解等)。矿产资源开采过程中,岩层必然会产生新裂隙,发生变形、破坏等现象;由于矿产资源赋存地质条件复杂,开发初期规划设计不合理或设计时没有充分考虑环境治理,几十、甚至上百年进行掠夺式开采,不治理开采环境,再加上一些不可抗拒的自然因素,致使一些生产矿井在鼎盛时期就已经开始孕育、潜伏并衍生着环境灾害,导致地面环境、地下水系或地面河流水质污染等水环境问题。

例如,有色金属矿山的重金属污染问题,尽管人们对金属矿尾矿库的重金属、砷等典型有毒物质的演变、迁移过程的机理做了大量的研究[2-7, 11],但也存在着许多问题值进一步深入研究和探讨,目前存在的主要问题如下:

1)各种研究主要是针对具体的存在问题开展的,其成果的典型性及其规律性有待提升和归纳。重金属污染程度与矿山生产规模、生产年限、装备和开采技术水平、矿物结构和特征等等都有一定的关系,一个矿山的重金属污染问题只能一定程度上说明矿产资源开发引发了重金属污染。

2)矿山环境中的外源重金属是通过一系列的采矿活动向环境释放迁移的结果,矿物中的重金属如何以各种形态释放迁移表生环境的地球化学机理又极其复杂,大量的未知还需进一步深入研究与探索。矿区大气重金属污染是矿产资源开发重金属污染重要的组成部分,其污染规律、机制和毒理尚缺乏深入研究。

3)矿山职工被毒物危害及周边农村疾病与采矿活动之间的关系,尚需要进行系统调查和研究。不同历史时期矿区各种疾病发病率对研究采矿活动重金属污染的机制和控制因素具有重要的现实意义。

4)矿产资源伴生有铀、锂放射性元素污染属于重金属污染问题,过去对放射性元素危害研究很少,伴生的放射性元素在风化作用下释放到土壤、河流环境中的机理以及对生态环境的影响作用都有必要进一步研究确定。

5)忽视累积环境影响。针对建设项目的环境影响评价使影响分析的范围缩小到仅考虑单个项目、某一具体的环境特征和地点,而忽视了由多个项目的叠加、协同作用、时间滞后和边界扩大等因素引起的环境变化,而这正是累积环境影响的特征。

6)缺乏评估和管理。按照现行的环境影响评价概念和管理程序要求,环境影响评价所关注的是拟建项目预测影响,很少关注项目运营所在产生的实际影响,环境影响预测结果得不到监测和验证,从而导致影响流于形式。缺乏对项目环境影响管理有效性和评估,很少关注对环境风险管理的有效性和对意外环境影响的处理能力。

4 国内一些高校的金属矿山安全与环境研究方向

我国高等院校往往处于科学技术研究的前沿,金属矿山的安全与环境科技同样如此。通过统计分析我国一些拥有采矿工程专业并以金属矿采矿为主要特色的高校的研究生导师的研究方向,也可以窥见很多问题。我国中南大学、东北大学和北京科技大学的采矿工程学科都是国家重点学科,其研究生导师的研究方向统计结果如表1所示。从1看出,这些高校的采矿学科博士生导师的研究方向大都围绕矿山开采与安全环境的实用工程技术问题而设立的,很超前的前瞻研究与很基础的、很边缘的和很有想象力的研究极少。这种状况与采矿和安全环境学科的特性、我们国家的科技发展水平、目前矿山的科技需求以及我们国家在科技方面的导向等有很大的关系。这些高校的研究领域主要侧重于岩石力学、地压控制以及采矿工艺,而在矿井通风、矿山火灾、粉尘控制、矿山环境治理、矿山安全管理以及尾矿库维护等方面的研究较少,说明金属矿山的安全与环境问题的研究仍然比较薄弱,需要加大在矿山安全与环境领域的科研项目支撑力度,鼓励部分研究者在该方向进行深入研究。

 

1  国内三所高校在金属矿山领域的研究方向统计

高校

导师

主要研究方向

中南大学

1

金属矿开采理论与技术、采矿新工艺、连续开采技术与装备

2

岩石动力学与岩土工程灾害控制、金属矿开采理论与技术、矿岩破碎

3

爆破理论、工程爆破

4

矿井通风与空调、矿山火灾防治、粉尘控制理论与技术、矿山安全管理

5

深部开采岩石力学基础与应用、计算岩石力学

6

金属矿床连续开采技术与装备、矿岩散体动力学理论与应用、矿业经济

7

金属矿深井开采与灾害控制、安全数字化理论与技术、矿山管理信息化发展战略与信息系统

8

矿山生产过程监控、数字矿山、安全预警预报、矿业经济、资源评估及环境信息系统

9

岩层控制、数字矿山理论与技术

10

金属矿安全高效采矿、深部岩石力学与工程、矿山系统工程

11

岩石及其结构的静、动态强度与可靠性分析、岩石损伤与断裂、地基沉降数值模拟与控制技术

12

工程结构可靠性研究、计算力学与岩土工程、岩石力学与采矿工程

13

采矿方法、无废害采矿工艺与充填材料

14

岩石力学、岩土工程稳定性分析、灾害控制理论与技术

15

岩石力学,测试技术

16

岩石力学,计算岩石力学,特殊采矿工艺

17

采矿工艺,充填理论与技术,资源经济学

18

安全检测技术,岩土灾害防治

北京科技大学

1

矿岩散体动力学、深井采矿与金属矿连续开采技术、溶浸采矿

2

岩石力学、采矿工程

3

采矿工程和岩土工程的地压控制、锚固支护以及数值分析

4

岩土工程、采矿工程、工程力学

5

采矿工程、系统工程

6

采矿工程、岩石力学与工程、工程地质灾害分析预测与防治

7

采矿工程、岩土工程、工程力学应用

8

岩土工程、采矿工程及防灾减灾

9

采矿工程与岩土工程稳定性、耦合问题数值分析、工程地质灾害防治

10

岩土防灾及地质灾害、防灾减灾及GIS信息系统开发、数字矿山、安全监测及信息管理系统

11

系统建模、仿真及可视化、资源经济与管理

12

微地震监测、矿山压力和岩层控制

13

岩土工程加固理论与稳定性分析、地质灾害预测与防治、矿床开采理论与工艺、地压控制理论与技术

14

矿床开采理论与技术、采矿工程计算机模拟及应用研究、矿山安全技术工程研究

15

矿床开采理论与工艺、地压控制理论与技术、地质灾害预测与防治、岩土工程安全评价与控制

16

职业危害与粉尘控制技术、安全(灾害)信息管理与评价 、大气污染控制技术

17

矿山安全、矿山环境保护

东北大学

1

岩石破裂过程失稳和脆性材料的破坏机制、地下工程和边坡稳定、岩层移动、岩爆、地震机制

2

岩土工程、智能岩石力学、计算岩土力学

3

矿山开采先进技术、系统工程与计算机在矿山应用方面的研究

4

采矿方法、放矿理论、矿山岩石力学、放矿计算机仿真

5

矿产资源开发、资源经济

6

岩体结构稳定性和岩爆、渗流耦合问题和化学流体力学

7

矿山采动岩体渗流力学、岩石力学

8

采矿工程、爆破安全

9

岩石和混凝土类准脆性材料损伤断裂、岩体工程中的多物理场耦合

10

系统安全理论与安全技术、应急救援与疏散、危险源辨识控制与评价、系统可靠性

11

安全科学理论、系统安全工程

12

微生物絮凝剂、污水处理生物菌剂、固液分离、污泥脱水

13

数字矿山、GIS算法与空间建模、灾变遥感、矿山开采沉陷控制技术、矿区环境与可持续发展

14

水处理技术、大气污染控制、噪声控制、环境监测技术、安全系统工程、工业通风与除尘技术

注:1)表中的导师姓名略去,代以数字表示,以避免产生误会。2)资料来源于学校博士生导师招生简章

 

5 国外一些高校的采矿工程专业研究方向

世界采矿工程研究水平较高的国家有美国、加拿大、澳大利亚、英国、南非、德国、俄国、智利等。由于各个国家社会发展阶段和水平不一样,在发达国家中采矿工程专业被视为传统专业。表2列出了美国、加拿大、澳大利亚的一些高校采矿工程专业的主要研究方向。从表2看出,从事采矿工程专业研究的人员没有像我们国家那么多;他们的采矿工程专业涉及比较宽,通常与地质、矿物加工等混为一体,也没有把金属矿和煤矿的采矿分开;采矿工程专业在国外的开办情况并不如国内热门,国际很多著名院校并未设立采矿工程专业,开办采矿工程专业的学校很少;国外这些高校采矿工程专业的研究方向仍与岩石力学、地质力学紧密相关,也有一些新方法开发、最优化及人工智能、虚拟现实、数值建模等研究方向;研究生导师设立研究方向与国内一样,大都围绕矿山开采与安全环境的实用工程技术问题而设立,很超前的前瞻研究与很基础的、很边缘的和很有想象力的研究极少[7, 13]

 

2  美国、加拿大和澳大利亚的一些高校采矿工程专业研究方向统计

高校

主要研究方向

内华达里诺大学

岩石力学,地下硐室群稳定性,爆破引起的地面震动、破碎和岩体运动,钻孔

矿井通风,矿山环境控制

矿山应用中的人工操作和机器人控制的互动关系,矿山设备仪器仪表,通风研究,安全、健康与通风成本效益最优化模拟与控制;利用编程方案的挖掘机控制

南伊利诺伊大学

岩石力学与岩层控制,煤矿的生产工程,矿山沉降

矿井通风,现场采矿系统

煤矿与矿物加工,精煤加工、脱水,骨料的开采与加工

宾夕法尼亚州立大学

矿井通风,煤矿粉尘控制,煤层气经济学

煤矿风路中的空气、甲烷和煤尘流动机制;

矿井通风;健康、安全、生产力和人力资源开发问题;采矿后土地的使用规划和现场环境规划

科罗拉多矿业大学

GPSRFID雷达和影像技术集成预警系统,露天矿的战略规划与优化

岩质边坡稳定,地下采矿岩石力学,岩土工程设计数值模拟应用,岩土工程中风险及概率计算,监测和检测仪器,实验室岩石试验

弗吉尼亚理工大学

选矿,过程控制,图像分析,传感器开发,数学建模与计算机仿真

犹他大学

矿山爆破应用,边坡稳定性,采矿诱导微震,煤炭资源回收

采矿工程,岩石力学基础和应用

肯塔基大学

 

选煤,选矿,先进物理选矿,微细颗粒加工,自动化与控制,应用表面化学,采矿工程导论

选矿厂工程,地下采矿作业

矿山的电气工程应用,主要研究领域包括电力系统保护与安全,电气元件故障早期检测和电能管理

岩土工程,地下水,土壤重构,露天矿开采

表面与胶体化学,选煤/清洗,摩擦电选分离,选矿磷酸盐,金属表面处理,细颗粒分离,脱水/过滤,浮选柱,矿物活化和抑制,酸性矿山废水控制,固体废物处理和利用,废水处理

地下建筑,矿山设计,岩层控制

矿井通风,矿山电力,矿业基础

亚利桑那大学

矿山管理,矿山自动化,业务管理和研究,应用人类学,工业关系,组织设计;矿山成本核算;流程改进方案和可持续性

岩石力学,断裂力学;断层和地震力学,钻孔爆破;微裂纹成像,损伤模型,利用数字图像测量块度、裂隙等

地球工程学岩体裂隙性质网络数值模拟,岩质边坡的稳定性分析

岩土工程材料的表征;岩土力学,岩石物理,岩软化,边坡稳定;地下采矿和建设,矿井通风,地球物理学,无创无损检测技术,仪器仪表,数据融合,知识整合;可再生能源

神经网络模式识别,地球物理学,环境调查,地理信息系统,遥感,矿产和石油勘探

新测量方法的研发,电和电磁地球物理,运用于环境工程、采矿、石油和天然气应用地球物理数据解释

西弗吉尼亚大学

矿山健康与安全,矿山设计、维护,矿工培训

矿山健康与安全,能源技术,数值模拟、沉降预测,矿柱设计、矿山微震

能源技术,岩石力学,地面控制

新墨西哥矿业技术学院

现场勘查,矿山设计,地质力学

应用矿产勘查,金属矿床和自然资源开发利用

岩土力学与数值模拟

岩石力学与测量

地质力学,钻孔与爆炸,岩石破碎,振动控制,统计学

阿拉斯加-费尔班克斯大学

装煤控制算法的开发,凹陷轧机过程控制,矿井生产仿真,三维矿井设计,劣等煤的燃烧应用

运筹学,计算机应用,矿山规划,矿井通风,严寒环境下的采矿,陶瓷膜材料

采矿与民用建筑岩石力学,矿山地面控制,岩爆,冻土工程,地理信息系统在采矿中的应用

阿尔伯塔大学

不确定性地球物理偏差预测,地质各向异性特征,地质建模,数值技术参数的选择,对病态系统矩阵求解方法,多尺度建模,数据集成的直接多元建模

岩石力学,应用地球物理,矿山辐射研究;地下空区,虚拟现实模拟器

智能采掘概念,油砂推土机刃曲率建模,地下矿山矿石贫化评估方法,高效经济的地表开采新技术;智能露天矿设计工程

皇后大学

应力建模和测量,放射性物质/氡气保护,快速凝固喷射支护,废玻璃替代水泥胶结充填料,抗酸性矿山废水的喷射支护材料研发;胶体充填设计与表现性质,新矿山开发的环境评估

机械设计,设备维护,维修管理,可靠性分析,系统建模,仿真与控制,矿山自动化,遥操作机器人系统

环境与可持续发展

职业健康和安全,原生态采矿问题,远程学习,矿业社区,公共政策

过程和环境,先进火法冶炼,金属工艺提取工程,先进金属冶炼

英属哥伦比亚大学

矿山生命周期系统;矿山相关地表构筑物(尾矿库、堆积场和废石堆场等)的结构与稳定

人工智能,环境控制与预防,模糊专家系统,人工神经网络、遗传算法

露天与地下采矿方法,可持续采矿,矿山通讯,作业条件安全

新南威尔士大学

岩石力学与地质学,虚拟现实模拟培训与评估,应急响应,风险管理,事故致因,职业健康与安全

岩体切割力学,机械采矿与掘进,采煤工作面机械化

科廷科技大学

露天矿生产运输,汽车调度与最优化,运输道路的设计与安全-风险评估

CRC采矿;现场地应力测量;矿石贫化控制;深部采矿挖设计;动态与静态的地面支护

巴拉瑞特大学

矿井通风与气候,矿井降温与制冷,核废料储存,爆破和爆破震动

阿德莱德大学

几何岩体力学,岩石三维破坏准则,岩石真三轴试验

采矿进程最优化,新一代煤矿运输系统,新的采矿工艺和技术,矿山测量与监控系统

埃克塞特大学

矿床形成,合理采矿,采矿对公众的影响

       注:资料来源于互联网各学校的介绍

 

6结论

1)由于金属矿山的开采技术条件越来越复杂,矿石回采的工艺技术多种多样,我国金属矿山科技发展很不平衡,我国金属矿山安全与环境问题一直非常突出,有很多的科学技术问题丞待解决。

2)我国采矿工程学科的研究方向大都围绕矿山开采与安全环境的实用工程技术问题而设立的,很超前的前瞻研究与很基础的、很边缘的和很有想象力的研究极少。研究领域主要侧重于岩石力学、地压控制以及采矿工艺,而在矿井通风、矿山火灾、粉尘控制、矿山环境治理、矿山安全管理以及尾矿库维护等方面的研究较少。

3)发达国家的采矿工程专业被视为传统专业,从事采矿工程专业研究的人员较少,采矿工程专业涉及面比较宽,通常与地质、矿物加工等混为一体,更没有把金属矿和煤矿的采矿分开。国外采矿工程专业的研究方向也与岩石力学等紧密相关,也有一些新方法开发、最优化及人工智能、虚拟现实、数值建模等方向。但很超前的前瞻研究与很基础的、很边缘的和很有想象力的研究也极少。

4)发达国家矿山安全环境的研究重点已经不是预防重大伤亡事故,而是侧重于职业健康研究,如矿工呼吸系统疾病的预防、矿工噪声性听力损失预防、矿工累积性肌肉骨骼损伤的预防等课题[13]

5)我国需要深入调查分析金属矿产资源开发利用以及矿山安全与生态环境现状,明确未来中长期金属采矿业的重大科技领域和关键技术,通过借鉴国内外技术创新体系建设的成功经验和相关理论研究成果,提出我国金属矿山科技和安全与环境的发展规划。

参考文献

[1] 于润沧主编.采矿工程师手册(上) [M].北京:冶金工业出版社,2009

[2] Merington G. The transfer and fate of Cd, Cu, Pb and Zn from two historic metallic ferrous mine in the U. K[J]. Applied Geochemistry, 1994, 9(4): 677-687

[3] Castrol-Larrgoitia J, Kramar U, Pucheh H. 200 years of mining activities at La Paz/San Luis Potosi/Moxico-consequences for environment and geochemical exploration[J]. J. Geochem. Expor, 1997, 58(5): 81-91

[4] Brotons, J. Moreno; Díaz, A. Romero; Sarría, F. Alonso; Serrato, F. Belmonte. Wind erosion on mining waste in southeast Spain[J]. Land Degradation and Development, 2010, 21(2): 196-209

[5] Mayan, Olga N; Gomes, Maria J; Henriques, Amélia; Silva, Susana; Begonha, Andrea. Health survey among people living near an abandoned mine. A case study: Jales Mine, Portugal[J]. Environmental Monitoring and Assessment, 2006, 123(1-3): 31-40

[6] 孙庆业, 蓝崇钰, 杨林章. 铅锌尾矿废弃地的化学性质研究[J]. 农村生态环境, 2000, 16(4): 36-39. SUN Qingye LAN

[7] Jay F. Colinet, Andrew B. Cecala, Gregory J. Chekan, John A. Organiscak, and Anita L. Wolfe. Best Practices for Dust Control in Metal/Nonmetal Mining[R].NIOSH, Pittsburgh, 2010

[8] 古德生,吴超等编著。金属矿山安全与环境科技发展前瞻研究[M]。北京:冶金工业出版社,2011

[9] 国家安全生产监督管理总局. 非煤矿山安全生产十二规划[R]. 2010

[10] 吴超主编。矿井通风与空气调节[M]。长沙:中南大学出版社,2008

[11] 廖国礼,吴超著。资源开发环境重金属污染与控制[M]。长沙:中南大学出版社,2006

[12] 古德生,吴超。金属矿山科技和环境问题及其思考[J]。科技导报,2011, 2912):11

[13] National Research Council and Institute of Medicine of the National Academies. Mining Safety and Health Research at NIOSH – Reviews of Research Programs of the National Institute for Occupational Safety and Health[M]. Washington, D C: The National Academies Press, 2007

本文刊登于《有色金属科学与工程》2012年第5



https://wap.sciencenet.cn/blog-532981-649687.html

上一篇:写博
下一篇:中国高校“人网”及其科学问题
收藏 IP: 202.197.68.*| 热度|

2 刘建兴 傅贵

该博文允许注册用户评论 请点击登录 评论 (2 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-20 19:41

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部