革命性的生物医用金属材料(RMB) ...分享 http://blog.sciencenet.cn/u/郑玉峰 从事新型生物医用金属材料(镁基、铁基、钛基、BMG、纳米晶)研究

博文

20150825-第七届可降解金属国际会议(意大利)-DAY2

已有 3392 次阅读 2015-8-27 06:15 |系统分类:博客资讯

DAY 2

 

K1‐Selective Laser Melting of magnesiumalloys

LJauer1, B Jülich1,M Voshage2, W Meiners1

1FraunhoferInstitute for Laser Technology ILT, Aachen; 2Chairfor Laser Technology, Aachen

University,Germany

 

Selectivelaser melting

Individualizationfor free

Complexityfor free

Weightreduction for free

 

Chances

Design ofscaffold-like structures

  • Optimizing ingrowth/degradation process

  • Enhanced vasculaization for fast removal of degradation products

  • Reduced bulk material(corrosion products)

  • Adaption of intial mechanical properties

Patientspecific adaption of surface contour

 

Challengens

Lowtemperature difference between melting and vaporation

  • Smoke during processing

  • Absorption of laser radiation

  • Reactive residue

  • Change of alloy composition

Oxidation

Oxide layeron powder particles

Wettingbehavior

Sensitive toprocess atmosphere

Affinity tosintering

 

Selectivelaser melting of AZ91

2X4X40mm 3point flexural strength

Horizontal

Vertical

Compared tocast, machined from ingot

 

Machining totest specimen B4X20 to DIN 50125

 

Tensilestrength depend on parameter set

 

Selectivelaser melting of WE43

Conventialparameters

Adaptedparameters

Postprocessed (particle blasting)

Cleaning bychemical etching

Micro-CT formetal volume determination before and after corrosion

Corrosionlayer and remaining metals

Application:下颌骨缺损

 

SLMpartproperties

Uniquemicrostructure

Internalstresses

Powder basedprocess

Stochasticsurface roughness

Pore voidspossible

Significantlyincreased surface

Oxideparticles and varying alloy composition

 

Possibleinfluence

Corrosion(bulk,stress, intial)

Mechanical properties

 

Postprocessing

Heattreatment

Hot isostaticprecessing (HIP)

Surfacetreatment

Particleblasting

 

Outlook

Processimprovements

Detailresolution

Surfaceroughness

Postprocessing

Heattreatment

HIP

Coating

Performance

 

O1‐Selective laser melting of pure Fe andpure Zn for biodegradable implants

MMontani1, AG Demir1,E Mostaed1, M Vedani1,B Previtali1

1Departmentof Mechanical Engineering, Politecnico di Milano, Italy

 

Fe metal

High meltingtemperature

High thermalgradient and fast heating and cooling rate

Nonequllibrium

 

Zn metal

Low meltingtemperature, short gap between melting and vaporation temperature

Zn losses,porosity

 

To investigatethe feasibility area of process parameters for Fe and Zn in terms of

Porositycreation mechanism

Mechanical property

IPG YLR-1000

Fe 41+- 19micrometer, Zn 42+-18 micrometers

Laser powder150-300W

Scan speed150-300 mm/s

Hatchdistance 100-130 micrometer

Layerthickness 50-100 micrometer

Spot diameter213 micrometer

Gas argon20nl/min

 

Low fluencycauses high lack of melting porosity

Zn have bothregions: LoM and EV

Thecontribution of the vaporation is important

SLM of pureZn

behaveddifferently since it is affected by excessive vaporation

does notallow dense structure

 

O2‐Fabrication of porous pure magnesiumsheet by selective laser melting

NSato1, K Hanada1,T Shimizu1, S Nakano1

1NationalInstitute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

 

Porous ductileTi6Al4V can be fabricated by SLM

Mater SciAppl 5(2014) 475-483

Fiber laser

Wave length1064nm

Spot size 175micometer

Powder 117micometer

Ar gas

TemperatureRT

Laser powder40-360W

Scanningspeed 100-1000mm/s

Scanninginterval 0.1 mm

Scanningstrategy zigzag

Sheet size10X10 mm

 

Density=0.492g/cm3

Porosity=72%

Surface ofporous sheet covered angular MgO particle, and metal Mg was observed under theMgO.

Bendingstrength and springback of porous Mg sheet ware 2.5MPa and 6.3%, respectively.

The weightreduction rate is 1.1mm/year

 

O3‐Safety recipient for controlledselective laser melting of magnesium

SBöhringer1, A Kessler1,J Rüegg1, R Schumacher1,E Schkommodau1, M de Wild1

1Universityof Applied Sciences Northwestern Switzerland, School of Life Sciences,Institute for

Medicaland Analytical Technologies, Muttenz, Switzerland

 

Functional latticestructure

Risk duringhandling the Mg powder

AZ91 powder

 

SOP1‐Comparison of additive manufacturedporous magnesium and titanium implants using primary osteoblasts and primarystem cells

JMatena¹, M Gieseke², M Teske³, S Petersen³, A Kampmann⁴, I Linke⁴, L Roland¹, MGrau¹,

HMurua Escobar5, NC Gellrich⁴, H Haferkamp6,I Nolte¹

¹Universityof Veterinary Medicine Hannover Foundation, Small Animal Clinic; ²Laser Zentrum

Hannovere.V; ³Rostock University Medical Center, Institute for Biomedical Engineering;

⁴HannoverMedical School, Department of Oral and Maxillofacial Surgery; 5Universityof

Rostock,Division of Medicine Clinic III, Hematology, Oncology and Palliative Medicine; 6Leibniz

UniversitaetHannover, Institut fuer Werkstoffkunde, Hannover, Germany

 

Hybridimplant

PCL-Mg

Matena et al.2015 Int J Mol Sci

 

SOP2‐Fabrication of zinc alloy minitubes forbiodegradable stent applications

EMostaed1, M Sikora‐Jasinska1,2, S Lofferdo1,D Mantovani2, M Vedani1

1Departmentof Mechanical Engineering, Politecnico di Milano, Milan, Italy; 2Lab.for

Biomaterials& Bioengineering (CRC‐I), Dept. Min‐Met‐Materials Engineering, LavalUniversity,

QuébecCity, Canada

 

Fe     Zn   Mg

Strength  desirable  poor    poor

Ductility   desirable desirable poor

Degradation  low  desirable fast

Zn-0.15Mg,Zn-0.5Mg Zn-1Mg Zn-0.6Al Zn-1Al

Interruptedtube extrusion

 

SOP3‐Absorbable filament design with three‐fold device function

JE Schaffer1, A J Griebel1

1FortWayne Metals Research Products Corp., Fort Wayne, IN, USA

 

Temporary replacementof permanent stiffness

Temporary replacementof permanent force

PneumRX LVRcoil

Absorbableswitch, SMA expansion

Freeexpansion ratio can exceed 20:1

 

O4‐Magnetron sputtered, structured ironbased foils as iodegradable implant material for minimal invasive vascular surgeryapplications

TJurgeleit1, E Quandt1,C Zamponi1

1Chairfor Inorganic Functional Materials, Inst. for Materials Science, Univ. of Kiel,Germany

 

 

O5‐Biodegradable magnesium alloy wirespreparation and application study

LLTan1, JL Li1,FF Liu2, K Yang1

1Instituteof Metal Research, Chinese Academy of Sciences, Shenyang; 2DongGuanEontec Co.,

DongGuan,China

Suture

staple

Mg-Zn-Nd

EMg12Nd<EMg 0.06V

Mg-2,4,6Zn-0.5Nd

Mg-6Zn-0.5NdUTS:313MPa 17.8%

Tensile forceafter knotted

Theelongation is important for the alloy for suture material

U-shapestaple

 

 

SOP8‐Tailoring the bioactivity of AZ31 alloyby nanofibrous PCL/HA composite coatings

for degradable metallic implantapplications

THanas1,2, TS Sampath Kumar1

1MedicalMaterials Laboratory, IIT Madras, Chennai; 2Schoolof Nano Science and Technology,

NITCalicut, Calicut, Kerala, India

 

 

SOP5‐Microstructure and mechanicalproperties of thin nanostructured hydroxyapatite coating deposited on thesurface of AZ31 magnesium alloy via RFmagnetron sputtering at a substrate bias

RSurmenev1,2, M Surmeneva1,T Mukhametkaliyev 1, A Tyurin3,T Pirozhkova3, R Stolyarov3

1NationalResearch Tomsk Polytechnic University, Tomsk; 2FraunhoferInstitute for

InterfacialEngineering and Biotechnology (IGB); 3 G.R.Derzhavin Tambov State University

 

700nm thickcoating, 1500nm thick coating

HA Increasethe corrosion

 

SOP6‐Design and manufacture of commerciallyviable absorbable magnesium alloys

RThornton1, I Syed1,P Lyon1

1MagnesiumElektron, Manchester, UK

 

High strengthnormally established by large alloying additions

Lower thermalconductablity, high temperature gradient, high residual stress

Alloys mustbe designed to have acceptable processing tolerance

 

O6‐Cold‐drawn Mgalloy composite wires minimize risk through galvanic coupling

AJGriebel1, JE Schaffer1

1Research& Development, Fort Wayne Metals Research Products Corp., Fort Wayne, IN,USA

 

Prematurefracture, overload, fatigue, severe localized corrosion, corrosion-assistedfracture

Mg-DFT-(Fe,Zn.Mg)

SheathMg-4Li, Core Zn 99.99%

LAEX6410-DFT-Fe

AZ31-DFT-LAEX6410

X-rayparameters: 125kVp, 0.42mAs 20in

Propermaterial selection has the potential to control the corrosion sequence.

 

O7‐New kind of bio‐functional Mg‐Cu alloy with enhancedosteogenesis, angiogenesis and long‐actingantibacterial performance

CLiu1, XK Fu2,Y Zhao 2, LL Tan1,Q Zhang3, HB Pan2,K Yang1

1Instituteof Metal Research, Chinese Academy of Sciences, Shenyang; 2ShenzhenInstitutes of Advanced Technology; 3ChinesePLA General Hospital, Beijing, China

 

Mg-Cu(0.05,0.2, 0.5wt%)

Mg2Cuincrease with the increase of Cu addition

 

SOP7‐Study on the preparation and propertiesof Mg/PLA composite for bone screw

JNi1, C Zhao1,H Wu1, Y Chen1,W Chen1, F Zhang1,Q Xia1, S Zhang2,X Zhang1

1Schoolof Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai;

2SuzhouOrigin Medical Technology Co. Ltd., Jiangsu, China

 

Mg 50-100micrometers

PLA-2%,5%Mgcomposite

Blendingdisperison and heat fusion

 

SOP9‐Silane coatings for surfacemodification of magnesium alloy

SAgarwal1, 2, J Curtin2,B Duffy1, S Jaiswal1

1Centrefor Research in Engineering and Surface Technology, FOCAS Institute; 2Schoolof Food

Scienceand Environmental Health, Cathal Brugha Street, DIT, Ireland

 

 

 

下午

 

K2‐Phase Diagrams: Which information’s you can get from them for alloy and process design?

NHort1, CL Mendis1,P Maier2

1MagnesiumInnovation Centre, Helmholtz‐Zentrum Geesthacht, Geesthacht; 2University of

AppliedSciences Stralsund, Stralsund, Germany

Binary phasediagram

To get ridoff eutectic structures, and concentration gradient, heat treatment is done.

A range oftemperature between Te and Tsouvous

Ternary phasediagram

 

SOP10‐Microstructure of as‐cast and T4 heat‐treated Mg2Gd‐x(Ag,Ca) ternary alloys

Y.Lu1, Y. Huang1,F. Feyerabend1, R. Willumeit‐Römer1,K. U. Kainer1, N. Hort1

1Instituteof Materials Research, Helmholtz‐Zentrum Geesthacht, Max‐Planck‐Strasse 1,

21502Geesthacht, Germany

 

Mg-2Gd-!Ag,2Ag, 0.4Ca, 0.8Ca

T4 heattreatment (510oC 48h) effectively reduce the content of the intemetallic phase.

 

SOP11‐Mg–Zn–Ca alloys processed by equal channel angular pressing

MKrystian1, M Bammer1,A Ostertag2, J Hofstetter3,S Beck4, B Mingler1

1BiomedicalSystems, Health & Environment Dept, AIT Austrian Institute of Technology

GmbH,Wr. Neustadt; 2Kühr GmbH, Wr. Neudorf, Austria; 3Laboratoryof Metal Physics and

Technology,Dept of Materials, ETH Zurich; 4SynthesGmbH, Oberdorf, Switzerland

 

Less Zn-richintermetallic particle, which acts as cathodic sites

23MPa perwt.%Zn, 6.2 solubility, maximum solid solution hardening 120MPa

MgZn5Zr0.5Ca0.25Mn0.15

MgZn5Yb2Zr0.5Ca0.25Mn0.15

 

SOP12‐Variations in degradation of ultrahigh‐purity MgZnCa alloys by thermal treatment

JDCao1, J Hofstetter1,M Cihova1, WW Trinh1,B Mingler2, PJ Uggowitzer1,JF Löffler1

1Laboratoryfor Metal Physics and Technology, Department of Materials, ETH Zurich, 8093

Zurich,Switzerland`2Biomedical Systems, Health &Environment Department, AIT Austrian

Instituteof Technology GmbH, 2700 Wr. Neustadt, Austria

 

Simulataneouslyhigh strength, ductility, and slow degradate rate

1 generationMg-5Zn-0.25Ca,

purfication

=>

2 generationUltrahigh purity(XHP*) ZX50

Reduction ofZn suggests change in electrochemical property.

=>

3 generationXHP Mg-1Zn-0.3Ca

 

O8‐In situ synchrotron radiationdiffraction during solidification of Mg4Y2Nd and Mg4Y2Ag1Nd alloys

GSzakács1, CL Mendis1,B Wiese1, D Tolnai1,A Stark1, KU Kainer1,N Hort1

1Instituteof Materials Research, Helmholtz‐Zentrum Geesthacht, Germany

 

 

 

O9‐Can defects improve properties ofmetallic biomaterial?

BWiese1, CL Mendis1,KU Kainer1, N Hort1

1MagnesiumInnovation Centre, Helmholtz‐Zentrum Geesthacht, Germany

 

0D defect

Amount andtype of alloy additions

Fastundercooling during solidification

1D defect

Rolling,extrusion, wire drawing, bending, etc.

2D defect

Casting,extrusion, wire drawing, heat treatment

 

O10‐Planar defects in magnesium alloys

BSmola1, I Stulíková1,T Kekule1, M Vlach1

1Facultyof Mathematics and Physics, Charles University, Prague, Czech Republic

 

WZ21

Stackingfault energy in Mg-Y-Zn alloys 0.9-1.8mJ/m2

Dislocationsplitting

Gamma’(MgZnY)

Gamma(stable)

Preferential corrosionalong planar defects, corrosion test in EMEM medium after 5 days

 

SOP13‐Investment casting of biodegradable Mg‐Ca‐Zn alloys

NAZumdick1, SF Fischer2,P Weiß2, A Bührig‐Polaczek2,D Zander1

1Chairof Corrosion and Corrosion Protection; 2FoundryInstitute, RWTH Aachen, Germany

 

High geometricfreedom

High surfacequality

Costeffective

 

SiO2,CaO andSO3, mold

450 degree C,T mold, smooth plates

650 degree C,T mold, severe reaction

 

SOP14‐Effect of composition on themicrostructure and properties of candidate Mg‐Si‐Sr alloys for resorbable material applications

AGil‐Santos1, G Szakacs2,I Marco1, N Moelans1,N Hort2, O Van der Biest1

1Departmentof Materials Engineering, KU Leuven, Leuven, Belgium; 2MagnesiumInnovation Centre (MagIC), Geesthacht, Germany

 

At.%

Mg-0.33Si-0.14Sr

Mg-0.41Si-0.07Sr

Mg-0.25Si-0.07Sr

Mg-0.11Si-0.07Sr

Mg-0.12Si-0.02Sr

 

Mg-0.25Si-0.07SrMg-0.11Si-0.07Sr optimized mechanical and degradation property. These alloyscontain less ternary intermetallic and Mg2Si.

 

SOP15‐Effect of grain size, extrusion ratioand extrusion temperature on the texture development in Mg‐xZr alloys (x=0~1 wt. %)

SYarmolenko1, Z Xu1,R Kotoka1, S Neralla2,J Sankar1

1NSF‐ERCCenter for Revolutionizing Metallic Biomaterials, North Carolina A&T State

University,Greensboro, NC USA. 2Jet‐Hot, Inc.,Burlington, NC, USA

 

0, 0.22, 0.41,0.56 wt%Zr

Texture formation:optimal grain size of pure Mg- 100 micrometers

 

O11‐Investigation of impurity levels ofbiodegradable Mg‐materials and their influence onbiocorrosion

MWolff1, JG Schaper2,M Dahms2, N Rüder3,C Vogt4, T Ebel1,F Feyerabend1, R Willumeit‐

Römer1,T Klassen5

1Helmholtz‐ZentrumGeesthacht, 2University of Applied Sciences, FHFlensburg, 3Technical

UniversityHamburg Harburg TUHH, 4LeibnitzUniv. Hannover, 5Helmut SchmidtUniv.,

Hamburg,Germany

 

Introduction ofan additional parameter Rmax (depth of surface roughness)

e.g. use forconfocal microscopy method(ISO25178)

Unaffectedsurface area, homogeneous surface corrosion, pitting corrosion with ferriticparticle inside.

Tolerance

Fe in pureMg(as-cast) 150-180 ppm

Fe in purewrought Mg : 2-5ppm

CriticalFe/Mn weight ratio: 0.01-0.032 ASTM-B94 standard

 

SOP16‐Tailored MG‐ZN‐CA alloy for biomedical application

HJRoh1,2, HS Han 2,JW Lee4, HK Seok 2,3,DH Kim 1, YC Kim 2,3

1Nanostructural Material laboratory, Yonsei University; 2Centerfor bio‐materials, Korea

Instituteof Science and Technology; 3Departmentof Bio‐medical Engineering, University of

Science& Technology; 4KookminUniversity, Korea

Mg-2Zn-0.1Ca:Ca2Mg6Zn3

Mg-2Zn-0.3Ca:Mg2Ca(Zn)

Mg-2Zn-0.1Cashow optimal mechanical and corrosion properties.

 

SOP17‐Properties of deformed Mg‐Gd alloys

IStulíková1, B Smola1,J Čížek1, M Vlček1,F Lukáč1

1Facultyof Mathematics and Physics, Charles University. Prague, Czech Republic

Mg-5, 10,15Gd

5 rotation byHPT 400 degree C 10-3 S-1 A~580%

 

SOP18‐Tensile and microstructural propertiesof annealed Mg10Gd‐alloy wires

MBartosch1, H Peters1,B Schmitt1, F Berger1,N Hort2, F Witte3

1DeutschesHerzzentrum Berlin, 2 Helmholtz‐ZentrumGeesthacht, 3 Julius Wolff Institut,

Charité.Berlin, Germany

Macjine andhand drawing

From 6mm to0.4mm

400 and 450degree C time 30, 45, 60, 90 min

As-drawn 0.7%elongation

As-drawn: distortedelongated grain

HT: Isotropicgrain

HT: Bimodalgrain

 

SOP19‐Shape optimization for a biodegradablemagnesium alloy stent using computer simulation

CXChen1,2, W Wu2,F Migliavacca2, GY Yuan1,WJ Ding1

1NationalEngineering Research Center of Light Alloy Net Forming and State Key Laboratory

ofMetal Matrix Composite, Shanghai Jiao Tong University, China; 2Dept.of Chemistry,

Materialsand Chemical Eng. ‘Giulio Natta’, Politecnico di Milano, Milan, Italy

 

Problems forMg stent

Crimping andexpansion

Contactitself

 




https://wap.sciencenet.cn/blog-39092-916297.html

上一篇:20150824第七届可降解金属国际会议-DAY1(意大利)
下一篇:20150826-第七届可降解金属国际会议(意大利)-DAY3
收藏 IP: 195.60.142.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-27 16:54

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部