shihuannan的个人博客分享 http://blog.sciencenet.cn/u/shihuannan

博文

我的英文专著获2019年度国家科技学术著作出版基金资助

已有 945 次阅读 2020-10-29 09:05 |个人分类:我的论文|系统分类:科研笔记




       2019年度国家科学技术学术著作出版基金资助项目评审工作已经结束。经专家评审、国家科学技术学术著作出版基金委员会批准,确定了2019年度国家科学技术学术著作出版基金资助项目,现予以公示(见附件)。公示时间为2019年11月1日至11月5日。

       如对公示项目有异议,请向国家科学技术学术著作出版基金委员会办公室书面反映。凡以单位名义反映情况的材料要加盖单位公章,以个人名义反映情况的材料要具实名并附联系方式,不受理匿名举报。
  联系人:高清奇 席梦佳   
  电 话:(010)58882505 传真:(010)58882505          
      (010)58881687   
  地 址:北京市复兴路15号 国家科学技术学术著作出版基金委员会办公室 邮编:100038  
  附件:2019年度国家科学技术学术著作出版基金资助项目

                    国家科学技术学术著作出版基金委员会办公室 
                       2019年11月1日


德国数学文摘对我的英文书的评论



Shi, Huan-nan

Schur-convex functions and inequalities. Volume 1. Concepts, properties, and applications in symmetric function inequalities. (English) Zbl 07085614

Berlin: De Gruyter; Heilongjiang: Harbin Institute of Technology Press (ISBN 978-3-11-060612-6/hbk; 978-3-11-060784-0/ebook). xviii, 218 p. (2019).

The classical majorization theory, combined with the theory of Schur-convex functions, provides an essential tool for proving/constructing inequalities. The two volumes of this monograph present the theory and applications of Schur-convex functions, in connection with majorization theory. Several theorems are stated without detailed proofs, only with precise references. Results obtained by Chinese mathematicians, initially published in Chinese, are presented here. Basic knowledge of advanced mathematics and linear algebra is required. The book includes many questions from the high school Mathematical Olympiad and can be useful by high school students and undergraduates. Postgraduates from various disciplines will also find it useful. In the first volume, Chapter 1 introduces the basic concepts of majorization theory and convex functions theory. Definitions and properties of convex (logarithmically convex, geometrically convex, harmonically convex, Wright-convex) functions are presented. Chapter 2 is devoted to the definitions and properties of Schur-convex functions, with applications of Karamata’s inequality. In Chapters 3 and 4 the Schur-convex functions are used to establish inequalities for symmetric functions.

Reviewer: Ioan Raşa (Cluj-Napoca)

 

 

Cited in 1 Review

MSC:

26-01

Introductory exposition (textbooks, tutorial papers, etc.) pertaining to real functions

49-01

Introductory exposition (textbooks, tutorial papers, etc.) pertaining to calculus of variations and optimal control

90-01

Introductory exposition (textbooks, tutorial papers, etc.) pertaining to operations research and mathematical programming

Keywords:

majorization theory; Schur-convex functions; inequalities

BibTeX Cite

Full Text: DOI

 

Shi, Huan-nan

Schur-convex functions and inequalities. Volume 2: Applications in inequalities. (English) Zbl 07055592

Berlin: De Gruyter; Heilongjiang: Harbin Institute of Technology Press (ISBN 978-3-11-060657-7/hbk; 978-3-11-060786-4/ebook). xviii, 238 p. (2019).

The second volume continues and supplements the material presented in the first volume. Chapter 1 is devoted to applications of Schur-convex functions theory to inequalities for convex sequences of real numbers. Te same theory is used in Chapter 2 in order to establish integral inequalities, in particular of Hadamard, Schwarz, Holder, and Chebyshev type. Mean value inequalities for two variables are studied in Chapter 3, while Chapter 4 is concerned with such inequalities for several variables. Chapter 5 is focused on Schur-convex functions and geometric inequalities.

Reviewer: Ioan Raşa (Cluj-Napoca)

 

 

 

Cited in 1 Review

MSC:

26A51

Convexity of real functions in one variable, generalizations

05-02

Research exposition (monographs, survey articles) pertaining to combinatorics

05E05

Symmetric functions and generalizations

26B25

Convexity of real functions of several variables, generalizations

26D07

Inequalities involving other types of functions

Keywords:

majorization theory; Schur-convex functions; inequalities

BibTeX Cite

Full Text: DOI

 

 https://www.degruyter.com/search?f_0=author&q_0=Huan-nan+Shi

 






https://wap.sciencenet.cn/blog-3453835-1256183.html

上一篇:为杨志明大作《重要不等式及应用》作序
下一篇:第九次全国不等式学术会议

0

发表评论 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2022-1-26 08:16

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部