ChinesePhysicsB的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsB

博文

[转载]CPB封面文章和亮点文章 | 2023年第3期

已有 519 次阅读 2023-3-31 15:28 |系统分类:论文交流|文章来源:转载

31.jpg

封面文章.png

Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance

Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳)

Chin. Phys. B, 2023, 32 (3):  038103

文章亮点介绍.png

在介观尺度的结构重建与介观掺杂,柔性材料可能获得全新的性能或属性。本研究通过微晶纤维素-二氧化锰(MCC-MnO2)纳米晶体对海藻酸钠气凝胶(SA)的介观重构与掺杂,成功地开发出一种具有优良去污能力的新型气凝胶介观新材料,使其具有高效的金属离子(如Cu2+和Pb2+)和有机染料(如刚果红和亚甲蓝)的去除能力。在多轮去污操作后,对污染物还保持非常强的去污能力。


该研究确证了柔性材料的介观重建的可行性,使得通过重建介观结构来创建介观功能材料成为可能。

原文链接

PDF

32.jpg

Fig. 1. (A) Schematic illustration of mesoscopic functionalization. (a) Conventional mesoscopic functionalization: the attachement of functional components (nanocomponents or molecules). (b) Functional templating: one of the most effective ways to recontruct soft materials. (B) Schematic depiction of the formation of MCC-MnO2/SA (MMSA) aerogels and the molecular structures.


亮点文章.png

Transition frequencies between 2S and 2P states of lithium-like ions

Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan

Chin. Phys. B, 2023, 32 (3):  033102

文章亮点介绍.png

锂原子及类锂离子作为三电子原子体系,一直受到实验工作者和理论工作者的关注和重视。一方面,这些体系为检验原子结构理论和计算方法发挥了重要作用,比如可以用于检验:(1)理论方法是否充分考虑了电子间的关联效应;(2)Breit相互作用算符是否正确;(3)众多相对论多体理论方法的收敛速度;(4)原子中的量子电动力学(QED) 效应,等等。另一方面,这些体系的精密光谱为确定原子核的电荷分布半径和磁矩分布半径提供了一种有效的方法。在过去的二三十年,理论工作者用非相对论量子电动力学(NRQED)方法对锂原子和类锂的铍离子进行了详细的计算,结合高精度的光谱实验数据,确定了锂原子核和铍原子核以及它们的各种同位素的电荷分布半径和某些同位素的磁矩分布半径。


本文用NRQED方法计算了类锂离子体系(Z=5–7,9–10)2S 和2PJ (J=1/2,3/2)态间的跃迁频率,包括非相对论贡献、领头阶相对论修正、领头阶QED修正以及原子核的有限质量和有限电荷半径带来的修正。我们得到的跃迁频率是目前最精确的理论结果,并且与文献中的实验结果符合得比较好,相比于文献中用相对论多体方法计算的理论值,我们的结果在精度上普遍高出一到两个量级。本文得到的结果是目前最精确的类锂离子体系2S 和2P态间的跃迁频率的理论值,为进一步研究这些体系的高阶相对论效应和QED效应打下了基础。

原文链接

PDF

33.png


亮点文章.png

Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures

Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武)

Chin. Phys. B, 2023, 32 (3):  037305

文章亮点介绍.png

KTaO3界面超导是继SrTiO3界面超导之后的第二个氧化界面超导体系,它的超导转变温度Tc比SrTiO3界面超导高近一个数量级,因此引起了研究人员的广泛关注。KTaO3具有立方结构,(001)、(110)和(111)是其三个最重要的基本晶面。研究发现(111)和(110)界面分别具有Tc ~2 K 和~1 K的超导电性,而(001)界面不超导。目前,人们已经在KTaO3单晶基底与EuO、LaAlO3、YAlO3、TiOx等多种氧化物薄膜构成的界面结构中实现了超导。然而,令人意外的是,这些氧化物薄膜几乎都不是外延生长的。这带来一个疑问:是否在KTaO3单晶基底与外延生长的氧化物薄膜构成的界面结构也存在相同的超导电性?


本工作在 (001)-、(110)-和(111)-取向的KTaO3基底上外延生长了LaVO3薄膜(Fig. 1(a) &Fig.1(b)),并研究了它们的电输运性质。发现虽然所有这些界面都可以导电,但只有(111)界面是超导的(Fig. 1(c)),并且Tc仅有~0.5 K,远低于以往非外延生长的界面。此外还发现为了使LaVO3/KTaO3(111)界面导电以及超导,薄膜需要缺氧的生长环境 (Fig. 1(d))。最后,在本文审稿期间,中国科学技术大学的陈仙辉和项子霁研究组报道了在外延生长的EuO/KTaO3(110)界面实现了Tc~1.35 K的超导(npj Quantum Materials, 2022, 7(1): 97);北卡罗莱纳州立大学的Kaveh Ahadi研究组报道了在外延生长的La2/3Sr1/3MnO3/KTaO3(111)界面实现了Tc~1.25 K的超导(Science Advances, 2023, 9(7): eadf1414)。结合这些工作,我们倾向于认为氧化物薄膜是否外延本身对KTaO3界面超导并不起决定性作用,更重要的应该是相应界面结构中在KTaO3一侧形成的界面势阱以及电子气的空间分布情况,它们与氧化物薄膜的具体种类、结构(包括是否外延)以及生长条件等多种因素相关。

原文链接

PDF

34.png

Fig. 1. (a) Out-of-plane θ-2θ XRD pattern. (b) Reciprocal space mapping around the (132) reflection. LaVO3 and KTaO3 Bragg’s peaks aligned along the vertical dashed line. (c) Temperature-dependent Rsheet(T) curves from 1.2 K to 50 mK. (d) Rsheet(T) curves for LaVO3 (17 nm)/KTaO3(111) heterostructures grown under different oxygen environments.


公用专题推荐.png

TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B

TOPICAL REVIEW — Physics in micro-LED and quantum dots devices

TOPICAL REVIEW — The third carbon: Carbyne with one-dimensional sp-carbon

SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems

SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University

TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids

TOPICAL REVIEW — Progress in thermoelectric materials and devices

SPECIAL TOPIC — Emerging photovoltaic materials and devices

SPECIAL TOPIC — Organic and hybrid thermoelectrics

SPECIAL TOPIC — Superconductivity in vanadium-based kagome materials

SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies

SPECIAL TOPIC — Non-Hermitian physics

SPECIAL TOPIC — Unconventional superconductivity

SPECIAL TOPIC — Two-dimensional magnetic materials and devices

SPECIAL TOPIC — Ion beam modification of materials and applications

SPECIAL TOPIC — Quantum computation and quantum simulation

SPECIAL TOPIC —Twistronics

SPECIAL TOPIC — Machine learning in condensed matter physics

SPECIAL TOPIC — Phononics and phonon engineering

SPECIAL TOPIC — Water at molecular level

SPECIAL TOPIC — Optical field manipulation

SPECIAL TOPIC — Modeling and simulations for the structures and functions of proteins and nucleic acids

SPECIAL TOPIC —Terahertz physics

SPECIAL TOPIC — Ultracold atom and its application in precision measurement

SPECIAL TOPIC — Topological 2D materials

SPECIAL TOPIC — Active matters physics

SPECIAL TOPIC — Physics in neuromorphic devices

SPECIAL TOPIC — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale

TOPICAL REVIEW — Quantum dot displays

TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery

SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang

TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang

SPECIAL TOPIC — Strong-field atomic and molecular physics

TOPICAL REVIEW — Strong-field atomic and molecular physics

TOPICAL REVIEW — Topological semimetals

SPECIAL TOPIC — Topological semimetals

SPECIAL TOPIC — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Fundamental research under high magnetic fields

Virtual Special Topic — High temperature superconductivity

Virtual Special Topic — Magnetism and Magnetic Materials


公用底.png

长按二维码,关注我们

官网:http://cpb.iphy.ac.cn  

https://iopscience.iop.org/journal/1674-1056




https://wap.sciencenet.cn/blog-3377544-1382482.html

上一篇:[转载]CPB2023年第2期编辑推荐文章
下一篇:[转载]CPB2023年第3期编辑推荐文章
收藏 IP: 159.226.35.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-3-29 04:25

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部