ChinesePhysicsB的个人博客分享 http://blog.sciencenet.cn/u/ChinesePhysicsB

博文

[转载]亮点文章 | 蛋白质折叠路径选择中的量子智慧

已有 1209 次阅读 2020-5-18 15:36 |系统分类:论文交流|文章来源:转载

2-1.jpg


亮点文章


蛋白质折叠路径选择中的量子智慧

第一作者 | 毛雯雯

通讯作者 | 李有泉


研究亮点

本文运用作者最近提出的图形上的量子行走方法,研究了蛋白质折叠中的路径选择问题。引入蛋白质结构的紧致度及最短路径的概念,研究发现:量子效应会促使蛋白质在折叠过程中重点选择最短路径,这必将缩短蛋白质的折叠时间,从而有望解决蛋白质折叠时间的理论计算值远大于实验值的矛盾。


研究背景

蛋白质折叠是分子生物学、计算科学、理论物理等诸多交叉领域的一个重要研究课题。关于蛋白质折叠过程,已被普遍接受的观点是:蛋白质折叠不会是一个在所有可能蛋白质结构中随机搜索的过程,因为这必将花费大量的时间,与现实中蛋白质很快折叠到自然结构的实验事实不符。为了从理论上解释蛋白质折叠时间问题,人们提出了许多理论模型。这些模型多依赖于不同的假设,这使得获取的理论结果无法直接与实验结果相比较,因为一些假设在实验中难以实现。本工作的作者近期提出从量子角度研究蛋白质折叠时间的理论框架,有望不依赖于人为假设,从理论上解释蛋白质折叠时间很短的问题[CPL. 36,080305]。但对于自然界的蛋白质,其包含氨基酸数目多,结构复杂,因此在[CPL. 36,080305]框架下穷尽计算所有可能序列的蛋白质折叠过程,计算耗时多。这促使作者进一步去探寻有效物理量,在无需穷尽计算的情况下就能去了解和揭示蛋白质折叠中的量子效应,发掘决定蛋白质折叠时间的深层次因素。


研究方法及结果

本工作中,作者引入蛋白质结构之间距离的概念,由此构建了一个距离空间,并将各蛋白质结构投影到XY平面内。在距离空间的基础上,蛋白质结构自然会被分为两类,最短路径上的结构及非最短路径上的结构。在此基础上,一方面,作者引入紧致度及非最短路径与最短路径上的几率比值两个物理量,借助这两个量的变化很好地反映蛋白质的折叠过程的特性;另一方面,作者将系统的密度矩阵约化成2×2的密度矩阵,自然地引入冯诺依曼熵刻画体系的量子特性。通过数值求解体系所满足的量子演化方程,作者求得了以上所定义物理量随时间的演化过程。采用量子方法获得的计算结果显示蛋白质折叠过程中更倾向于选择最短路径,而经典结果刚好相反,这揭示了蛋白质折叠过程中在路径选择方面存在 “量子智慧”。此外,作者计算了蛋白质折叠时间,量子方法所获得的蛋白质折叠时间明显小于经典方法,这说明从路径选择角度与折叠时间角度获得的结果相吻合,进一步揭示了蛋白质折叠中可能存在量子效应。


研究意义或前景

本工作从蛋白质的折叠路径选择角度,用量子方法研究了蛋白质折叠问题,揭示了蛋白质折叠在路径选择上的“量子智慧”,期望能为人们从理论上理解蛋白质折叠时间开辟一条新思路。


文章来源

Chin. Phys. B, 2020, 29 (1): 018702


原文概览

Quantum intelligence on protein folding pathways


Wen-Wen Mao(毛雯雯)1, Li-Hua Lv(吕丽花)1, Yong-Yun Ji(季永运)2, You-Quan Li(李有泉)1,3


1 Zhejiang Province Key Laboratory of Quantum Technology&Device and Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Department of Physics, Wenzhou University, Wenzhou 325035, China;
3 Collaberative Innovation Center of Advance Microstructure, Nanjing University, Nanjing 210008, China


Keywords: protein folding, quantum walk, shortest pathways, mean first passage time


We study the protein folding problem on the base of our quantum approach by considering the model of protein chain with nine amino-acid residues. We introduce the concept of distance space and its projections on a XY-plane, and two characteristic quantities, one is called compactness of protein structure and another is called probability ratio involving shortest path. The concept of shortest path enables us to reduce the 388×388 density matrix to a 2×2 one from which the von Neumann entropy reflecting certain quantum coherence feature is naturally defined. We observe the time evolution of average distance and compactness solved from the classical random walk and quantum walk, we also compare the features of the time-dependence of Shannon entropy and von Neumann entropy. All the results not only reveal the fast quantum folding time but also unveil the existence of quantum intelligence hidden behind in choosing protein folding pathways.


2-2.png


2-3.jpg




2-4.jpg2-5.jpg



CPB专题推荐

TOPICAL REVIEW — Quantum dot displays

TOPICAL REVIEW — CALYPSO structure prediction methodology and its applications to materials discovery

SPECIAL TOPIC — A celebration of the 100th birthday of Kun Huang

TOPICAL REVIEW — A celebration of the 100th birthday of Kun Huang

SPECIAL TOPIC — Strong-field atomic and molecular physics

TOPICAL REVIEW — Strong-field atomic and molecular physics

TOPICAL REVIEW — Topological semimetals

TOPICAL REVIEW — New generation solar cells

TOPICAL REVIEW — Recent advances in thermoelectric materials and devices

SPECIAL TOPIC — Amorphous physics and materials

TOPICAL REVIEW — Soft matter and biological physics

SPECIAL TOPIC — Nanophotonics

SPECIAL TOPIC — Photodetector: Materials, physics, and applications

SPECIAL TOPIC — Topological semimetals

TOPICAL REVIEW — Photodetector: Materials, physics, and applications

TOPICAL REVIEW — Nanolasers 

TOPICAL REVIEW — Physics research in materials genome

TOPICAL REVIEW — Fundamental research under high magnetic fields

SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)  

TOPICAL REVIEW — Spin manipulation in solids

TOPICAL REVIEW — Nanophotonics

TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science

TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences

SPECIAL TOPIC — Recent advances in thermoelectric materials and devices

TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials

TOPICAL REVIEW — Solid-state quantum information processing

SPECIAL TOPIC — New generation solar cells

SPECIAL TOPIC — Soft matter and biological physics

Virtual Special Topic — High temperature superconductivity

Virtual Special Topic — Magnetism

TOPICAL REVIEW — ZnO-related materials and devices

TOPICAL REVIEW — Topological electronic states

TOPICAL REVIEW — 2D materials: physics and device applications

TOPICAL REVIEW — Amorphous physics and materials

TOPICAL REVIEW — High pressure physics

TOPICAL REVIEW — Low-dimensional complex oxide structures

TOPICAL REVIEW — Fundamental physics research in lithium batteries

TOPICAL REVIEW — Interface-induced high temperature superconductivity

2-6.png



https://wap.sciencenet.cn/blog-3377544-1233740.html

上一篇:[转载]亮点文章 | 单重态五重态混合的j=3/2超导体的表面马约拉纳零能带
下一篇:[转载]亮点文章 | 一种用于复杂颗粒流场测量的新型粒子跟踪测速法
收藏 IP: 159.226.35.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-19 05:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部