程鹗的科学网博客分享 http://blog.sciencenet.cn/u/eddiecheng 与科学、科学家、科学历史有关的通俗小文

博文

宇宙膨胀背后的故事(廿九):宇宙的膨胀在加速 精选

已有 5343 次阅读 2020-3-5 06:47 |个人分类:科学历史|系统分类:科普集锦

1990年代是天文学又一个激动人心的年代。1990年4月24日,“发现”(Discovery)号航天飞机升空,在卫星轨道上装置了人类第一台遨游太空的天文望远镜,以现代最著名的天文学家命名为“哈勃太空望远镜”(Hubble Space Telescope)。

即使是在难得的晴空万里的黑夜,即使是在海拔数千米的高山之巅,地球上的望远镜都会受到大气层的影响。大气层不仅吸收了大量的星光(尤其是微波、红外、紫外等波段的电磁波),而且即便是微弱的气流搅动也会造成相片的模糊失焦。在现代化的镜片制作、电子成像工艺精益求精之后,天文望远镜的精度已经达到极限,大气层成为最大的障碍。

早在1920年代火箭技术刚刚起步时,就有人提出现代的运载火箭有一天能将天文望远镜送上太空,彻底摆脱大气层。1946年,年仅32岁的美国人斯皮策(Lyman Spitzer)发表论文,系统地阐述了太空望远镜的设计。一年后,他接替导师罗素担任普林斯顿天文台台长(他也是著名的普林斯顿受控热核聚变实验室的创始人)。其后几十年,他一直在美国航天局领衔推动这个梦想的实现。

与哈勃本人早年的经历相似,哈勃望远镜的亮相有过颇多磨难。1986年“挑战者”号的灾难迫使航天飞机整体停飞两年多,哈勃望远镜也不得不在仓库中被冷藏了四年。终于进入轨道后,它又被发现镜片制作不当,拍摄的照片散光、模糊,没达到设计要求。1993年,“奋进”(Endeavour)号航天飞机再度造访轨道上的哈勃望远镜。宇航员经过一番复杂的太空操作为它添加了一副矫正镜片。戴上眼镜之后的哈勃望远镜终于大放光彩,不仅在科学发现上屡建奇功,而且连年拍摄出大量丰富多彩的天文照片,令爱好科学的大众惊艳不已。

HST-SM4.jpeg

在太空轨道上傲视天穹的哈勃天文望远镜。

今天,人们提到“哈勃”时,他们指的大多是天外的那台望远镜,而不是近100年前威尔逊山上的那位少校。作为个人的哈勃早已悄悄地离开了这个世界,在地球上没有留下痕迹。但从1990年起,他的墓碑已经超脱地球的羁绊,独自在太空中翱翔;犹如他的魂灵,永恒地凝视着深邃的宇宙,捕捉、收集来自远方、来自远古的微弱星光。

× × × × ×

1996年,普林斯顿借250周年校庆之机举办了一系列活动。夏天,他们邀请天文学家在那里济济一堂。特纳、皮布尔斯等新生代“无赖宇宙学家”接连发言,企图复活普林斯顿老前辈爱因斯坦当年那无中生有的宇宙常数。他们从理论上论证,宇宙中存在的物质、暗物质不足以解释宇宙的平坦,需要宇宙常数帮忙。

科什纳主持了特纳与其他理论家的一场辩论。之后,他转向珀尔马特,问他的看法。珀尔马特没有纠缠理论,表示他可以谈谈他们遥远超新星测量的结果。

作为天文学家的哈勃最著名的是他发表的星系速度与距离关系图,显示星系远离我们而去的速度与它们的距离的数据点构成一条直线,即成正比。虽然勒梅特曾更早地发现这个规律,这个图还是被称作“哈勃图”;正比关系即“哈勃定律”。那条直线的斜率便是“哈勃常数”——宇宙年龄的倒数。

哈勃那时的数据有限,误差也相当大。所以他那张图上数据点发散,与他画的直线之拟合颇为勉强。温伯格后来评论说哈勃发现正比关系其实是出自他本人的主观愿望。好在那之后的几十年里,桑德奇等一整代天文学家以越来越多的数据、在越来越远的距离上证实了哈勃定律。从1920年代哈勃、胡马森力所能及的几百万光年距离到1990年代珀尔马特追求的几亿光年外超新星,哈勃图上的直线不断地延伸,经受了历史的考验。

果然,珀尔马特在会上拿出的他们最初七颗超新星也都处在那条(再度伸长后的)直线上。皮布尔斯当即表示:如果这些数据成立,他们刚刚还正在鼓吹的宇宙常数理论就完结了。

哈勃定律的正比关系可以用一个膨胀中的气球形象地描述:在一个均匀膨胀中的气球表面,任何两点拉开的速度与它们之间的距离成正比。不过,宇宙还有一个气球式的日常经验不具备的因素:时间。

因为光速有限,我们抬头看到的太阳其实只是八分钟以前的太阳。同样,几亿光年之外超新星的亮光、红移给我们带来的并不是它们今天正在离开我们的速度,而是几亿年前它们所在之处的膨胀速度。当然,如果宇宙膨胀的速度像阳光一样恒定不变,这个时间差即使巨大也没有影响。

如果宇宙在大爆炸之后只是惯性地膨胀,其速度会保持恒定。如果宇宙中有足够的质量、暗质量以其引力拉后腿,宇宙的膨胀便可能减慢,甚至在将来某个时刻逆转为坍缩。而如果像特纳、皮布尔斯等人所主张,宇宙中还有一个宇宙常数项在起着与引力相反的作用,那么宇宙的膨胀也可能会加速。

要知道是哪种情形,我们可以比较遥远超新星所报告的远古时的速度与今天的数值。在哈勃图上,这表现在远方的数据点是否继续符合那条代表恒速的直线。如果宇宙的膨胀速度不恒定,那里的数据点会一致性地偏离直线。它们往哪一边偏离便告诉我们宇宙膨胀是在减慢还是在加快。

珀尔马特的七颗超新星基本上都在哈勃图的直线上。如果仔细计较,它们还稍微偏向宇宙膨胀减慢的一侧。他认为据此很难想象我们处在一个因为宇宙常数作用而在加速膨胀的宇宙。但他同时也指出,这些数据的误差太大,不足以下确切的结论。宇宙膨胀无论会是在减慢还是加快,其变化都会微乎其微。他们还需要找到更遥远、更古老的超新星,才能分辨出明显的差异。当然,他们也需要更精确的测量手段。

科什纳没有发表意见。他对珀尔马特的结果信心不大,却还拿不出自己的数据来。

× × × × ×

因为需要运送到大气层之外,哈勃望远镜并不特别巨大。它的口径2.5米,与哈勃当年使用的胡克望远镜同样大小。由于不受大气层的屏蔽、干扰,也没有地球表面灯光的污染,哈勃望远镜拍摄出的照片依然让地球上几倍大口径的望远镜瞠乎其后。要更精确地测量遥远的超新星,哈勃望远镜似乎是不二之选。

1990年代的天文望远镜已经不再要求天文学家像哈勃、桑德奇那样整夜整夜地将自己关在小笼子里,强忍寒冷、尿急、孤单,手工操作保持目标的锁定。电子计算机控制的自动跟踪系统更完美地接替了这一重任。天文学家可以坐在舒适的办公室甚至自己家里通过互联网远程遥控望远镜。

远在天外的哈勃望远镜当然只能通过远程操作进行观测。

不过哈勃望远镜不是静止地坐落在高山上,而是“悬浮”在太空,并以每90分钟绕地球一圈的高速在运行着。不仅它锁定目标的操作异常复杂,还必须时刻注意瞬息万变的方位,避免被邻近的地球、月亮挡住视线,更要躲过太阳光的直射。为了防止意外,使用哈勃望远镜的天文学家需要在至少一个月前将观测计划提交给控制中心,由他们仔细审查、确认万无一失才能通过,并编写成计算机程序。地球上的控制中心每星期上传一次指令,给哈勃望远镜布置下一个星期的运作,非不得已绝不会临时更动。

这样,随机出现的超新星不可能在哈勃望远镜的计划之中。

珀尔马特却很有信心。他们已经完善了寻找超新星的“流水线”方式,不仅“随要随有”,还能“指哪打哪”。他们可以事先设定好哈勃望远镜便于观测的天域,然后在一个月前后分别进行两次观测,其中肯定会有超新星出现。

他的申请又一次撞到科什纳的枪口上。作为决定哈勃望远镜时间分配的权威之一,科什纳出言阻扰。他指出哈勃望远镜的使命是进行地面望远镜无法胜任的天文观测,没必要为超新星浪费、冒险。还好主持分配的负责人十分欣赏珀尔马特的创新精神。他几经斡旋,达成了一个折中方案:同时给伯克利和哈佛的团队提供时间,一碗水端平。科什纳也就不再反对动用哈勃望远镜观测超新星了。

只是两个团队之间的积怨又加深了一层。在学术会议上,几乎很难再看到科什纳与珀尔马特同时出现。

× × × × ×

珀尔马特公布最初结果的那年,里斯还是哈佛的研究生,正在分析他们当时仅有的第一颗超新星数据。一天,导师科什纳领着来访的特纳和古斯走进他的办公室,鼓励他汇报一下最新进展。面对突然出现的三位学术名人,里斯惴惴不安。他的结果显然不靠谱:在哈勃图上,他的超新星不在那条直线上,也不在它应该在的一侧,而是落到了另一边。

特纳乐了,这个与珀尔马特相反的结果倒正是他希望看到的。研究生难为情地解释,这只是他们的第一次尝试,可能实验、计算上有错,也可能误差太大,总之不可靠。

伯克利那最初七颗超新星的论文在一年后的1997年7月正式发表。同时,使用哈勃望远镜的观测获得了预期的成功,给他们提供了从两颗新的超新星上获取的更高精度、可靠得多的数据。不妙的是,这两颗星与前面七颗星的表现不一致,在哈勃图上跑到了直线的另外一侧。

经过仔细核查,他们发现当初和新的超新星中各有一颗其实不是Ia型,应该去除。但剩下的那颗新的还是顽固地在与原来的六颗唱着反调。他们面临一个窘境:新的这颗星只是孤证,却是哈勃望远镜测量的结果,比原来的几颗的误差小得多。但是否为它推翻刚刚已经发表的另外六颗星的结论?

他们在10月初发表了这个尴尬的结果。因为用哈勃望远镜测量超新星本身就是一个重大突破,他们不能落到对手的后面。果然,哈佛的搜索队几乎同时也发表了论文。两篇论文都强调了哈勃望远镜的技术优势,反而对超新星的具体结果淡然处之,未下结论。

× × × × ×

里斯毕业后来到伯克利的粒子天文学中心做博士后,继续他的数据处理。他已经把计算过程反复修改、更新了无数遍。虽然越来越自信,他的超新星总还是固执地处在哈勃图上不应该的那一侧。

以天文学家为主的哈佛搜索队十分松散,人员遍布世界各地的天文台。施密特结婚后伴随妻子搬去了澳大利亚,经常往智利的天文台奔波。他们团队的联系全靠日益成熟的电子邮件,辅之以时区混杂的越洋电话。里斯和施密特保持着密切的电邮、电话联系,每次完成一项计算都要交给对方进行独立核查。作为警示,他们在那一系列电邮中分别以“弗莱希曼”、“庞斯”署名。几年前,美国化学家弗莱希曼(Martin Fleischmann)和庞斯(Stanley Pons)大张旗鼓地宣布他们用简单的设备实现了室温下的核聚变(cold fusion),造成巨大轰动。但他们这个“历史性突破”很快被证明不可重复,成为科学界一桩丑闻。

施密特每次看到里斯的邮件都忧心忡忡。他知道里斯聪明绝顶,但觉得他还年轻、不够细致,才会一次次得出意外的结论。但他的疑虑随着一遍又一遍的验证逐渐消散。不仅是那第一颗,他们随后测量的几颗超新星的确都在哈勃图的“错误”一侧。同时,他们也得到珀尔马特那边的结论也在发生变化的消息。

同为年轻人,里斯在伯克利经常与珀尔马特那班人一起打球游乐,互相取笑对方在超新星项目上的不足。他知道在超新星的数量上他们不可能赶上对手超前的进度,但相信自己的计算方法略高一筹,可以在质量上取胜。但更迫切的是时间。他能够感受到双方都进入了最后的冲刺,终点已经在望。

在竞争压力之外,里斯还面临着另一个时限:他定在1998年1月10日结婚。1997年的年底,他把自己关在因为圣诞节假期而空无一人的办公室里,日日夜夜起草论文。1月4日,里斯把草稿寄给施密特审阅。8日,施密特回信道:“你好,宇宙常数!”。

施密特和里斯终于各自都有了强劲的自信:他们这个结论有99.7%的可能是正确的。宇宙的膨胀速度既不恒定,也没有因为引力减慢,而是在加速:因为他们测量的超新星都坐落在哈勃图中加速膨胀的那一侧。这只能用特纳、皮布尔斯等人复活的宇宙常数解释。

他们随即把起草好的论文转寄给全体成员征求意见。里斯忙里偷闲,回家乡举行了婚礼。他没有忘记天文学家的身份,把蜜月安排在夏威夷,可以“顺便”去那里的天文台帮忙。旅途中他们再度路过伯克利,他强拉着新娘又跑到办公室打开计算机查看邮件。信箱里已经塞满了大家对论文底稿的反应,支持和反对的几乎参半。

最直截了当的信件来自他们的导师科什纳。他在邮件中写道:你们内心里知道这是错的。但你们的脑子在告诉你们要发表……

科什纳对珀尔马特不得不更正才发表的结果毫不惊讶,他从来没有信任过伯克利那群物理出身而混迹天文的年轻人。他也清楚自己的门徒里斯和施密特为了避免重蹈弗莱希曼和庞斯的覆辙已经竭尽过全力。但他的内心还是不能够接受他们的结论。仅仅几年前,他为这个项目提交的资金申请书的副标题便是“利用Ia超新星……测量宇宙膨胀的减速”。

十来年前,科什纳在研究1987A超新星的来源时曾经犯过一个错,不得不事后纠正已发表的结果。他很不愿意重复那个经历,尤其是在宇宙常数这么一个举足轻重的历史性概念上。珀尔马特刚刚因为一颗超新星否定了前面六颗的结果,而他们手上才刚刚有四颗超新星,如果仓促发表了很快又要更正该如何是好?

在新婚妻子责怪的眼神下,里斯自顾自地坐下来写了一封长长的回信,再次论述他的信心。他回应科什纳说,既不要用心也不要用脑,应该用眼睛看这个结果。毕竟,他们都是天文学家。

信件发出后,他就伴随妻子度蜜月去了。当妻子抱怨地问道他们以后的日子是不是都会时常这样被他“重要的工作”搅乱时,里斯回答:不会,不会。只是这一次……真的是不一样。

× × × × ×

施密特向里斯发出“你好,宇宙常数”电邮的那一天,珀尔马特正在美国天文学会的年会上作报告。他向在场的记者介绍,他们已经有了40多颗遥远超新星的数据。他骄傲地宣布,今后,如果要知道宇宙的归宿,你会去咨询实验天文学家而不是哲学家。

还不到40岁的珀尔马特应该很庆幸他大学时在物理与哲学之间所做过的选择。他更没忘了强调:重要的不是宇宙的归宿本身,而在于人类能够通过科学的手段认识宇宙的归宿。

在那几个月里,珀尔马特在各地做了多场学术报告。他展示的数据越来越多。与里斯看到的相同,他们后继的超新星也都跑到了哈勃图上的另一侧。但因为事关重大,他始终没能直截了当地揭开宇宙膨胀在加速这个惊天秘密。在那次年会上,伯克利和哈佛两个团队都只是提出宇宙的结局不会是坍缩,而是永远地膨胀下去。

2月22日,珀尔马特又在一次会议上作报告。曾经是他的队友但后来“叛变”到哈佛团队的菲利彭科(Alex Filippenko)坐在下面,紧张地聆听他的每一句话。这一次,珀尔马特还是只提到他们的数据中可能有宇宙常数存在的证据,依然没有明确其含义。菲利彭科如释重负。接下来便是他的演讲,而他来之前就已经得到了团队的授权。在展示数据之后,他不再含糊其辞,旗帜鲜明地表明地遥远超新星的测量结果意味着宇宙的膨胀在加速。

image--028.png

基于超新星测量的新“哈勃图”,远距离上的数据点明显偏离直线。图中的几条线是根据不同参数取值的理论预测。

虽然不及室温核聚变事件时的疯狂,宇宙膨胀在加速也是一起震惊科学界的重大发现,立刻引起了媒体的轰动。里斯、施密特、科什纳等一时都成为当地电视台追逐的明星。他们的感想在各大报刊中转载。引用最多的是施密特回忆他最初的反应:一半惊异一半恐惧。惊异在他压根没料到会得到这样一个结论;恐惧则因为他觉得天文学界不可能接受这么一个结论。

那个时刻,伯克利团队已经有了42颗超新星的数据,哈佛搜索队只有16颗。但哈佛数据中的误差只有伯克利的一半,因此具备更多的自信。用里斯的话说,他们这几只乌龟终于超越了珀尔马特那只兔子。伯克利的人很不服气,对《纽约时报》记者抱怨哈佛那几个人只是验证了他们的结果,却在公关游戏上赢得了先机。

科什纳也在《纽约时报》采访中表达了由衷的感概:你知道世界上最强大的力是啥?不是引力,而是嫉妒。

伯克利和哈佛的这两支队伍从一开始就处于互不相容、近乎你死我活的争斗之中。这个激烈的竞争是他们能在短短几年内克服无数困难、开创宇宙学新纪元最强大的动力。而有意思的是,他们互相隔绝、几乎完全不合作的运作方式也带来意外的收获。

施密特的恐惧不是空穴来风。除了那极少数“无赖天文学家”,天文学界的共识一直是宇宙膨胀速度恒定,只可能会因为引力作用有微不足道的减速。没有人认同宇宙常数的存在、宇宙膨胀会加速。与发现宇宙膨胀所依据的造父变星不同,超新星是一次性事件,其测量结果无法重复核对,因此更难取信于人。

但伯克利和哈佛这两个团队各自独立地寻找到不同的超新星,使用完全不同的测量和数据处理手段,互相之间从来没有因为交流而“作弊”过。他们却殊途同归,得出了同样的、事先都没有预料过的结论。这不能不令人信服。

珀尔马特说,两个团队的结果是“暴力的和睦”(“in violent agreement”)。

× × × × ×

这两个团队之间的竞争也没有因为他们共同的成功而结束。在那之后的十来年里,他们为究竟是谁最早做出这一发现、谁最先公开发表等等在多个场合打了无数的笔墨官司——尤其是在国际性大奖的评比之际。

F1.medium.gif

2011年,珀尔马特(左)、施密特(中)和里斯(右)领取诺贝尔奖。

直到2011年,已经不再那么年轻的珀尔马特和施密特、里斯因为这项历史性贡献分享了诺贝尔奖。


(待续)




https://wap.sciencenet.cn/blog-3299525-1221821.html

上一篇:宇宙膨胀背后的故事(廿八):角逐遥远的超新星
下一篇:宇宙膨胀背后的故事(三十):称量星系的体重
收藏 IP: 71.196.147.*| 热度|

2 王安良 刁承泰

该博文允许注册用户评论 请点击登录 评论 (9 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-19 23:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部