健康工作 快乐生活—麦立强—纳米 ...分享 http://blog.sciencenet.cn/u/麦立强 博士,教授,博导,哈佛大学访问学者:结友,交流,进步

博文

新纳米快报论文被权威替代能源网站做专题报道

已有 59548 次阅读 2010-10-28 00:27 |个人分类:学术快讯|系统分类:论文交流| 论文, 纳米线, 锂离子电池, 纳米快报, 超长

【按】一个美国的同事告诉我,你们的最新Nano Lett论文被权威替代能源网站Green Car Congress’专题报道了,仔细浏览一下,看到报道全文,又仔细看了一下读者的评论,发现大家非常关注,并给予积极的评价。在哈佛最大的感受,学术讨论氛围比较好,大家乐于学术讨论,尽管都喜欢听好话和赞美的话,但批评性和建设性的建议还是很受欢迎的,对研究质量的提高也非常有用。欢迎各位同行和朋友加强交流和讨论,提高研究水平,共同进步,把辛苦争取到的国家经费发挥积极的作用!!
New cost-saving method to synthesize vanadium oxide nanowires for Li-ion electrodes; Improved capacity and cycling stability
23 October 2010
(a, b) Schematic illustration of formation of the ultralong hierarchical vanadium oxide nanowires during annealing. (c) Side view of two ultralong hierarchical vanadium oxide nanowires near each other. (d) Self-aggregation of short vanadium oxide nanorods. Credit: ACS, Mai et al. Click to enlarge.
A team from Harvard University and the Wuhan University of Technology (China) has synthesized novel ultralong hierarchical vanadium oxide (V2O5 nanowires from attached single-crystalline vanadium oxide nanorods via electrospinning combined with annealing and using low-cost starting materials.
Compared with self-aggregated short nanorods synthesized by hydrothermal methods, the ultralong hierarchical vanadium oxide nanowires exhibit much higher capacity and improved cycling stability, the researchers report in a paper published online 18 October in the ACS journal Nano Letters.
...in the ordinary batteries, owing to the high surface energy, nanomaterials are often self-aggregated, which reduces the effective contact areas of active materials, conductive additives, and electrolyte. How to keep the effective contact areas large and fully realize the advantage of active materials at nanometer scale is still a challenge and of great importance. Hierarchical nanostructured materials such as hollow nanospheres, porous nanostructures, nanotubes, nanowire-on-nanowire structures, and kinked nanowires, etc., can ensure the surface remains uncovered to keep the effective contact areas large even if a small amount of inevitable self-aggregation occurs.
There has been much interest in electrospinning and/or electrochemistry of vanadium oxide nanowires/nanorods because nanostructured vanadium/molybdenum oxides with a typical layed structure have the potential to offer high capacities for lithium ion batteries.
...Compared with previous studies on electrospinning of vanadium oxide nanowires by using expensive organic vanadium oxide isopropoxide as the raw materials, we successfully synthesized vanadium oxide nanowires via electrospinning by using inorganic ammonium metavanadate as precursor, which is cost-saving and more suitable for industrial production of lithium batteries. Moreover, the as-prepared ultralong hierarchical vanadium oxide nanowires were found to offer high charge/discharge capacities and improved cycling stability.
—Mai et al.
The initial and 50th discharge capacities of the ultralong hierarchical vanadium oxide nanowire cathodes are up to 390 and 201 mAh/g when the lithium ion battery cycled between 1.75 and 4.0 V. When the battery was cycled between 2.0 and 4.0 V, the initial and 50th discharge capacities of the nanowire cathodes are 275 and 187 mAh/g.
Self-aggregation of the unique nanorod-in-nanowire structures has been greatly reduced, the authors suggest, because of the attachment of nanorods in the ultralong nanowires, which can keep the effective contact areas of active materials, conductive additives, and electrolyte large and fully realize the advantage of nanomaterial-based cathodes.
The high performance of our batteries is attributed to several reasons. We deduce that self-aggregation of the ultralong hierarchical vanadium oxide nanowires can be effectively prevented, which keeps the surface area large to fully realize the advantage of nanostructured materials. Furthermore, after annealing at 480 °C, the vanadium oxide nanorods of high crystallinity in the nanowires make the active materials stable during cycling...Compared with other vanadium oxide nanorods by combining electrospinning with hydrothermal treatment or annealing, our ultralong hierarchical vanadium oxide nanowires have higher specific capacity and better cycling capability.
...The nanorod-in-nanowire described in this paper is a unique structure that will probably have potential applications in chemical power sources, sensors, and other nanodevices.
—Mai et al.
Resources
·    Liqiang Mai, Lin Xu, Chunhua Han, Xu Xu, Yanzhu Luo, Shiyong Zhao, and Yunlong Zhao (2010) Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries. Nano Lett., Article ASAP doi: 10.1021/nl103343w
October 23, 2010 in Batteries | Permalink | Comments (7) | TrackBack (0)
TrackBack
TrackBack URL for this entry:
http://www.typepad.com/services/trackback/6a00d8341c4fbe53ef01348867ad46970c
Comments
This sounds exciting.
"390 and 201 mAh/g when the lithium ion battery cycled between 1.75 and 4.0 V. "
I'm assuming the discharge curve is typical of other batteries, meaning the voltage and current stay pretty high until it's almost discharged, and then they drop of rapidly. In that case we might conservatively expect an average voltage of 3 V and gravimetric capacity of 300 mAh/g. Multiplying these together gives 900 wh/g (0.9 kWh/kg) energy density for the cathode.
This is 80 or 90% higher than LiCoO2 or LiFePO4 according to the chart on http://en.wikipedia.org/wiki/Lithium-ion
Thew self-aggregation of carbon nanotubes in the Contour/MIT cathodes was also a problem, but they found an electorostatic method to prevent clumping and maintaining porosity. This and the electrospinning/annealing processes seem very promising.
I remember seeing claims ten years ago that nano-tech would change the world. It looks like that may turn out to be true.
The exciting thing is that this appears to be a manufacturing breakthrough. We've seen many examples of how nanorods, nanotudes, nanoparticles, etc can absorb more lithium in the laboratory. But we haven't seen as much news on manufacturing techniques that can make a battery cheaply (and without expensive heavy metals like cobalt).
Good point. It's all about the cost to manufacture the materials now and these techniques will allow them to become widely used.
This could have good potential for future higher performance batteries if patent restriction doesn't keep it from being manufactured and marketed.
Wonder how many similar patents were bought out by oil firms.
A cathode that has 80% more capacity would make more than 80% for the battery. That's because the cathode takes about 40% of the mass of the battery, while the anode is about 20%.
So for a 100g battery, the new cathode would weigh 22 grams instead of 40 g. Using Dr. Qui's silicone nanowire anode means a reduction to about 3 grams from 20. That's more than 50% reduction combined. The separator and packaging could be reduced by 50% too, which is 20 g. So the whole battery now weighs only 45g. This is more than doubling the energy density per kg compared to a LiFeO2.
Yeah, that is why I'm always excited to see advances in cathodes. They lag far behind anodes and make up a greater percentage of the total weight/volume.
Very encouraging.
Verify your Comment
Previewing your Comment
Posted by:  | 
This is only a preview. Your comment has not yet been posted.
窗体顶端
窗体底端
Your comment could not be posted. Error type:
Your comment has been posted. Post another comment
The letters and numbers you entered did not match the image. Please try again.
As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.
Having trouble reading this image? View an alternate.
窗体顶端
窗体底端
窗体顶端
Post a comment
This weblog only allows comments from registered users. To comment, please Sign In.
You are currently signed in as (nobody). Sign Out
(You can use HTML tags like <b> <i> and <ul> to style your text. Entering text activates the Post and Preview buttons.)
Your Information
(Name is required. Email address will not be displayed with the comment.)
Name is required to post a comment
Please enter a valid email address
Invalid URL
窗体底端
Green Car Congress © 2010 BioAge Group, LLC. All Rights Reserved. | Home | BioAge Group
 


https://wap.sciencenet.cn/blog-3082-377818.html

上一篇:常用的网上购物,机票,宾馆预订网站(20100605更新)
下一篇:《自然》(亚洲材料)报道麦立强课题组单纳米线电化学器件进展
收藏 IP: .*| 热度|

1 张肖飞

该博文允许注册用户评论 请点击登录 评论 (5 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-27 13:44

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部