# 海洋环境监测平行系统优化融合

Citation: SU Zhendong,YANG Ruiping,WANG Feiyue, "Optimum fusion of marine environment monitoring parallel system", Journal of National University of Defense Technology, Vol. 42, No. 1, pp.170-175.

Optimum fusion of marine environment monitoring parallel system

SU Zhendong, YANG Ruiping, WANG Feiyue

Abstract：The functional redundancy between multiple marine environmental monitoring systems leads to resource waste and unnecessary capital investment. Therefore, the systems should be integrated optimally into an organic whole to save resources and costs of marine environmental monitoring. In light of this, the Entropy method was introduced on the basis of linear programming and the marine environmental monitoring system was divided into different modules according to functions. Taking cost and efficiency index as the main object and through reasonable allocation, the construction cost can be reduced as far as possible while ensuring that the monitoring capability after optimization and integration is not reduced.

Key words:  parallel monitoring systems; optimum fusion; linear programming; entropy method

１ 基本思路

２ 体系融合模型

２.1 体系融合熵的概念

2.2 海洋环境监测体系优化模型

２.2.1 基于体系熵的分析

2.2.2 基于体系效能与体系支出的分析

１）体系总效能的数学模型：

２）体系总支出的数学模型：

3 多目标融合分析

其中，Di表示进行简并模式时该单元的成本，Ei 表示不进行简并模式时该单元的成本。显而易 见，Di ＜Ei，所以在系统优化融合时，尽量多地采用简并模式（即增大 qi），总成本便会有可观的减 少；但考虑突发事件的存在，需要设定一定的 １-qi值，即在突发事件时可保证有足够数量的 设备应对不测。在式（10）中，Di受融合策略的影 响，以下主要说明融合策略以及效能指标优化和熵指标优化。

４ 熵值法体系优化

4.1 熵值法评价

１）对各指标同度量化以方便计算第 ｊ项指 标下的第 ｉ个指标值的比重 pij:

２）计算熵值 ej：

３）计算第ｊ项效用值。对一项指标，指标的波 动越小，熵值就越小，对应的效应值就越小，所以有：

４）确定权重：

５）综合评价值：

4.2  体系优化

５ 结论

[1] 苏振东, 杨瑞平, 王飞跃.海洋环境平行监测体系架构及应用[J].指挥与控制学报, 2018,4(1):32-36.

SU Zhendong, YANG Ruiping, WANG Feiyue.Parallel marine environment monitoring systems:architecture and application [J].Journal of Command and Control, 2018, 4(1): 32-36.(in Chinese)

[2] 张成良.基于熵理论建构的融媒体指标体系建构与评测[J].新媒体与社会, 2017(2):97-120.

ZHANG Chengliang.Construction and evaluation of convergence media index system based on entropy theory[J].New Media and Society, 2017(2):97-120.(in Chinese)

[3] 李建勋, 柯熙政.关于组合导航系统中的熵理论[J].弹箭与制导学报, 2006,26(SA):1092-1094.

LI Jianxun, KE Xizheng.Research on entropy theory in integrated navigation system[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2006,26(SA):1092-1094.(in Chinese)

[4] Luo B, Khan M M, Bienvenu T, et al.Decision-based fusion for Pansharpening of remote sensing images[J].IEEE Geoscience and Remote Sensing Letters, 2013,10(1):19-23.

[5] 胡昌振, 谭惠民, 石岩.多传感器系统最优决策融合的熵方法[J].北京理工大学学报, 1997,17(1):14-18.

HU Changzhen, TAN Huimin, SHI Yan.Entropy methods for optimal decision fusion in multi-sensor systems[J].Journal of Beijing Institute of Technology, 1997,17(1):14-18.(in Chinese)

[6] Piplani R, Wetjens D.Evaluation of entropy-based dispatching in flexible manufacturing systems[J].European Journal of Operational Research, 2007,176(1):317-331.

[7] Yu S, Efstathiou J.An introduction of network complexity[C]//Proceedings of Manufacturing Complexity Network Conference, Cambridge, 2002:249.

https://wap.sciencenet.cn/blog-2374-1296208.html

## 全部精选博文导读

GMT+8, 2021-9-29 01:10