储成才的个人博客分享 http://blog.sciencenet.cn/u/储成才 中国科学院遗传发育所研究员,主要从事植物分子生物学研究

博文

车荣会博士Nature Plants文章揭示水稻籽粒大小调控分子机制

已有 8144 次阅读 2015-12-22 07:53 |个人分类:个人随笔|系统分类:论文交流

水稻产量由分蘖数、穗粒数和粒重三要素所决定。所谓分蘖数是指每一株水稻发育到后期所产生的分枝数,而穗粒数是指每一分枝上拥有的籽粒数,粒重则是指每粒种子的重量,很大程度上粒重由种子的大小和灌浆程度所决定。尽管分蘖数、穗粒数和粒重最终决定了水稻产量,然而,在实际育种工作中,这三者间却存在非常强的负相关,也就是说,分蘖数增加往往导致穗粒数减少或籽粒变小,穗粒数增加常常会导致分蘖数减少、籽粒变小,籽粒变大导致分蘖数减少或穗粒数减少等。因此,在育种实践中,育种家很难获得三者同时具有正向效应的育种材料。

我们实验室与福建农科院赵明富研究员课题组经过10多年的合作,从一个非常稀有的水稻大粒材料RW11中克隆了一个控制水稻粒长的显性关键因子GL2GL2编码一个植物类特异性转录因子——生长调控因子,通过常规的杂交将RW11中的GL2回交转育到小粒水稻品种博白B中,改良的博白B品种籽粒灌浆速度明显加快,千粒重由19.38增加到24.64,增加27.1%,最为重要的是,含有GL2的近等基因系不仅籽粒增大,分蘖数和穗粒数也有显著增加,从而使单株产量增加16.6%。进一步通过生理、生化及遗传学等手段对GL2调控水稻籽粒大小的分子机制进行详细研究,科研人员发现了重要植物激素——油菜素内酯信号途径下游的一条调控籽粒大小的特异性分支途径,这项研究不仅诠释了调控水稻籽粒大小的分子机制,更为重要的是,为水稻高产育种提供了非常难得的育种材料和基因资源。


该项研究成果于2015年12月22日凌晨在线发表在 Nature Plants 杂志(DOI: 10.1038/NPLANTS.2015.195)上。Nature Plants 同时刊发了日本东京大学 Hirokazu Tsukaya 教授写的新闻和观点 (News & Views) Yield increase: GRFs provide the key. 2: 15210。中央电视台在22日早《朝闻天下》第一时间播发了相关新闻。课题组博士后车荣会博士和童红宁副研究员为该文章的共同第一作者。该项研究得到了自然科学基金委和中国科学院的资助。

 

                                                                   储成才研究组招收博士后启事


     实验室面向国家重大战略需求和国际科学前沿,倡导“快乐科学 (Happy Science)” 理念,以研究者兴趣为导向,基础理论研究和应用实践相结合,常年招收有志于加入团队的博士后研究人员。我们的理念 “building the stage for each dreamer!

     相关博士后申请参见 (http://www.genetics.cas.cn/rczp/zpxx/201504/t20150422_4342822.html)。如需了解实验室相关情况,请访问实验室网站 (http://chulab.genetics.ac.cn/)。


推荐阅读相关论文:

1. Che R, Tong H, Shi B, LiuY, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M and Chu C (2015) Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants  2: 15195.

Featured with News and Views in Nature Plants by Hirokazu Tsukaya: Yield increase: GRFs provide the key. 2: 15210.

2. Chu C (2015) A new era for crop improvement – From model-guided rationale design to practical engineering. Mol. Plant 8(9): 1299-1301.

3. Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J and Chu C (2015) Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl. Acad. Sci. USA 112(35): 11102-11107.

4. Hu B, Wang W, Ou S, Tang J, Li H, Che R, Zhang Z, Chai X, Wang H, Wang Y, Liang C, Liu L, Piao Z, Deng Q, Deng K, Xu C, Liang Y, Zhang L, Li L and Chu C (2015) Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47(7): 834-838.

Featured with News and Views in Nature Plants by Dai-Yin Chao and Hong-Xuan Lin: Nitrogen-use efficiency: Transport solution in rice variations. 1: 15096.

Highlighted with a Research Highlight article in J. Genet. Genomics. 2015, 42(9): 463-465 and Sci. China Life Sci. 2015, 58(8): 827-828.  

Selected for F1000 Prime. doi: 10.3410/f.725540326.793508312.

5. Xu F, Fang J, Ou S, Gao S, Zhang F, Du L, Xiao Y, Wang H, Sun X, Chu J, Wang G and Chu C (2015) Variations in CYP78A13 coding region influence grain sizeand yield in rice. Plant Cell Environ. 38(4): 800-811.

6. Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q and Chu C (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26(11): 4376-4393.

7. Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J and Chu C (2014) OsNAP connects absisic acid and leaf senescence by fine tuning absisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. USA 111(27): 10013-10018.

8. Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F, Qian Q, Cao X and Chu C (2012) The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1, and promotes flowering in rice. Plant Cell 24(8): 3235-3247.

9. Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L and Chu C (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24(6): 2562–2577.

10. Li C, Wang Y, Liu L, Hu Y, Zhang F, Sodmergen, Wang G, Schläppi MR and Chu C (2011) A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet. 7(7): e1002196.



https://wap.sciencenet.cn/blog-2351-945020.html

上一篇:刘林川博士PNAS文章讲述‘老激素 新故事’
下一篇:高少培博士Plant Cell最新工作揭示水稻最上节伸长调控机制

6 蔡小宁 王可骞 冯桂海 徐大彬 decipherer song0817

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2021-10-25 16:33

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部