全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

公转轨道偏心率控制行星大气密度和温度:金星是温室效应的经典吗?

已有 2556 次阅读 2021-12-20 07:43 |个人分类:全球变化|系统分类:论文交流

公转轨道偏心率控制行星大气密度和温度:金星是温室效应的经典吗?

                           吉林大学:杨学祥,杨冬红


     第四纪大冰期的冰盖变化主要集中在北半球

 

我们在1992年指出,冰川在地表的分布是不均匀的。对古冰盖体积的估算一般是通过地质和地貌的调查,从古冰盖分布面积推算体积,推算的方法参照现代冰川形态方面的经验公式及其相关的分析方法。表1中可以算的,北半球冰盖在间冰期融化的总和为44.68×106km3,而南半球的总体积不大于6.1×106km3,差额为37.58×44.68×106km3,。换句话来说,冰期的冰盖扩大主要集中在北半球,北半球占88%,南半球仅占12%[1-10]

 

冰期(G)与现代(T)大陆冰总量对比(根据R.F.Flint,1971)

冰川

时间

面积

106km2

厚度

km

体积

106km3

折合水体积

106km3

相当海平面上升量(m

南极冰川

 

T

G

12.53

13.81

1.88

23.45

26.00

21.50

23.84

59

66

格陵兰冰川

T

G

1.73

2.30

1.52

1.52

2.60

3.50

2.38

4.01

6

11

劳伦台冰川

T

G

-

13.39

-

2.20

-

29.46

-

27.01

-

74

科迪勒拉冰川

T

G

-

2.37

-

1.50

-

3.55

-

3.25

-

9

斯堪的纳维亚冰川

T

G

-

6.66

-

2.00

-

13.32

-

12.21

-

34

其他冰川

T

G

0.64

5.20


0.20

1.14

0.18

1.04

0.5

3

合计

T

G

14.90

43.73


26.25

76.97

24.06

71.36

65

197

G-T




50.72

47.30

132

 

从表1中可以看到,南极冰川在末次冰期后的冰川融化中,对海平面上升的贡献仅为7米。这为全球变暖导致的南极冰盖融化提供了变化上限。1994年周尚哲提出,到目前为止,所获得的地质纪录却证明南北半球的冰期是同步进行的[9]。第四纪冰期以北半球的冰川变化为主。

 

气象学家的认识误区:南极冰盖形成源于陆海分布

 

我们在2013年撰文指出,根据莱伊尔的地质学原理,大陆分散在赤道可形成极热气候,大陆集中在两极可形成极冷气候。德雷克海峡通道的打通是在始新世和渐新世完成的。白垩纪的最强全球变暖与德雷克通道的封闭有关;德雷克海峡通道的打通隔断赤道向南极的热输送,使南极变冷,逐渐成为冰盖策源地,海冰的封堵和融化影响秘鲁寒流,被称为气候开关[1-6]

中生代时期,全球各大陆集中在一起,形成一个几乎从一个极延伸到另一个极其巨大的单一陆块,这种轮廓肯定有助于周围大洋中的高效率向极热输送。在南、北两半球,一个单的环流系统作用范围至少达到纬度55度,以致宽阔的、深而缓慢的赤道流在穿过低纬度大于180度弧的旅途中被大大加热。

中始新世和早渐新世之间的总的温度下降,在整个新生代都是最急剧的。这种下降被认为由如下原因引起:①德雷克通道和塔斯马尼亚以南的通道开始为全球循环和气候上隔离的环极流打开了通路;②由于澳大利亚新几内亚向北移动,吸热的赤道水面积缩小;③特提斯海关闭,不能使赤道环流通过[1-4]

Van Andel等人(1975)在分析了太平洋所有不整合之后提出,德雷克通道的打通可能形成了环极流,并隔断了对南极洲的向极热输送,因而产生了冰架和冷的底水。对第三纪早期普遍变冷起作用的明显构造事件是巴拿马地峡的封闭,因而限制了大西洋与太平洋之间赤道水体的交换[4]

同理,我们多次撰文指出,德雷克海峡被扩展的南极冰盖封闭,导致气候上隔离的环极西风漂流带的消失,加强赤道热流向两极的输送,使扩展冰盖趋于消失,是南极冰盖不能扩展成南半球大冰川的一个重要原因[2-4]。这就解决了1994年周尚哲提出的问题。

20世纪晚期古气候研究的最大突破,在于证实了地球轨道参数变动造成的冰期旋回即“米兰科维奇周期”。1994年周尚哲提出,冰期天文理论的一些结论与实际并不完全符合,其中最明显的两个问题是:

其一,根据冰期天文理论,地球南北两半球都将以23000a(近日点相对春分点的周期)为周期交替发生冰期,这就是冰期天文理论关于南北两半球交替发生冰期的学说。但是,到目前为止,所获得的地质纪录却证明南北半球的冰期是同步进行的[9]

其二,冰期天文理论认为,冰期发生在地球轨道偏心率e的高值时期。实际上,e的高值却对应第四纪的间冰期[2,3]

显然,仅靠太阳辐射量的变化难以解释这些矛盾。莱伊尔关于大陆集中在赤道形成最热气候、大陆集中在两极形成最冷气候的陆海分布决定气候变化理论仍然有效[4]。石炭-二叠纪大陆集中在南极形成大冰期,中生代大陆分裂在赤道形成温暖期,第四纪大陆向北极圈集中形成大冰期。这是天文冰期理论适用于第四纪而不适用于中生代的原因。大陆漂移理论为全球气候变化提供了构造机制。构造活动是全球气候变化的头等重要因素[5]

在短周期的气候变化中,德雷克海峡中的海冰进退控制气候变化的一个可能模式是:南极半岛海冰增多使西风漂流在德雷克海峡受阻,导致环南极大陆水流速度变慢和南太平洋环流速度变快,部分受阻水流北上,加强秘鲁寒流,使东太平洋表面海水变冷,加强沃克环流及增强赤道太平洋热流与南极环流的热交换,增温的南极环流使南极半岛的海水减少;南极半岛的海冰减少使德雷克海峡水流通量增加,导致环南极大陆水流速度变快和南太平洋环流速度变慢,使部分本应北上的水流转而进入德雷克海峡,造成秘鲁海流变弱和东太平洋表面海水变暖,减弱沃克环流;结果使堆积在太平洋西部的暖水东流,减弱赤道太平洋热流与南极环流的热交换,降温的南极环流使南极半岛海冰增加。这就是德雷克海峡的海冰变化调控全球气候变化的机制,称之为南极环大陆海冰的气候开关效应(图1)。

当南极洲的温度变冷时,存在很多海冰的德雷克通道处于封闭状态,阻塞环南极大陆的海流,加快南太平洋环流,并从向极方向连接南极洲热输送,从而使南极洲变暖;当南极洲的温度变暖时,存很少海冰的德雷克通道处于开放状态,打通环南极大陆海流,减慢南太平洋环流,并从向极方向隔离南极洲热输送,因而使南极洲变冷。如图1所示,非洲海冰开关I,澳大利亚海冰开关II和德雷克海峡开关III控制了环南极大陆海流,并从向极方向隔离或连接向南极洲的热输送,因而增加或减少在非洲、澳大利亚和南美洲西部的海洋寒流流量。因此,南太平洋海温的增加和减少在环南极三个海冰开关的控制下不断交替发生,与南太平洋环流速度减慢与增加相对应[1-7]

http://blog.sciencenet.cn/blog-2277-998883.html

 


1. 全球气候的三个海冰启动开关示意图

 

地球历史上,气候冷暖确实与温室气体浓度有很好的对应关系,但并不表明温室气体增加是全球变暖的唯一原因,一个可能的模式是:德雷克海峡打通导致南极冰盖形成,南极冷水下沉导致海洋底层变冷,由于海底藏冷效应,海洋降温吸收大量温室气体,导致大气温室气体浓度下降,形成第四纪冰期气候。

有证据表明,中生代海洋底层温度为10-15℃,第四纪大冰期鼎盛时期降为0℃,目前为2℃。这是一个非常可靠的检验标准,我们离中生代温暖期相距十分遥远。

如果徳雷克海峡没有闭合,第四纪大冰期就不会结束,南极海冰消失就是气象学家的白日梦。

德雷克通道的打通可能形成了环极流,并隔断了对南极洲的向极热输送,因而产生了冰架和冷的底水。对第三纪早期普遍变冷起作用的明显构造事件是巴拿马地峡的封闭,因而限制了大西洋与太平洋之间赤道水体的交换。同理,德雷克海峡被扩展的南极冰盖封闭,导致气候上隔离的环极西风漂流带的消失,加强赤道热流向两极的输送,使扩展冰盖趋于消失,是南极冰盖不能扩展成南半球大冰川的一个重要原因。

      杨学祥和杨冬红分别在1997-2011年提出了海底藏冷相应海洋锅炉效应拉马德雷冷位相灾害链200年和准60潮汐降温效应

     海底温度测量表明,海底冷水层的温度为摄氏2度,表层海水水温为27.5度左右,温差为25.5度,为强潮汐调温效应和海震调温效应提供必要的条件。历史资料显示,在全球温暖的白垩纪,海洋底层温度为15度,表层温度为21度,温差为6度。这是强潮汐调温效果在白垩纪显著降低的原因。而在第四纪冰期到来之前,海洋底层水温度逐渐降低到0度,增大的温差为强潮汐和海洋巨震的调温作用准备了条件。超低海底冷水被强潮汐和海洋巨震翻到海洋表面,使大气迅速变冷,导致冰期的到来[2-819]

  赤道热两极冷是太阳能量纬度不均匀分布造成的。由于大气热容量低,大气热对流不能改变这一基本规律。海水则不同,其热容量大,热对流的传热效果十分显著。计算表明,每立方米的水和空气温度降低一度所释放的能量分别为4180000焦尔和1290焦尔,前者是后者的3240倍。这个巨大差别可从海洋性气候和大陆性气候的比较中看到。瓦伦西亚岛和赤塔同在北纬52度附近,前者位于爱尔兰的大西洋岸,属于海洋性气候,后者位于亚洲大陆内部,属于大陆性气候。虽然纬度相近,但温差在一年内的分布相差悬殊。一年内最冷和最热月份温度的差值,在瓦伦西亚只有7.9度,在赤塔则为46.1度,大于前者5.5倍之多。前者年均温度为摄氏10.3度,后者为零下3度,差值为13.3度。这说明海洋的内能多于大陆,海洋是大气热量的重要供应者。

  海水因为含有平均约3.5%的盐分,所以它的最大密度约出现在摄氏负2度左右,恰好与海水开始结冰的温度很接近。两极临近结冰的海水密度最大,源源不断地沉入两极海底,自转离心力使较重的海水向赤道海底运动,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,被安全地封存在海底,冷水领域还不断扩大。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流。随着海洋冷水区的不断扩大和赤道海洋表层热水区的不断缩小,赤道和两极的温差也不断加大,形成中、高纬度地区的冰盖和冰川。我们称这个过程为海底藏冷效应。它是海气相互作用的典型范例,大气中的冷能由此而进入海洋。冰雪反射太阳辐射,随着冰雪面积的不断扩大,地表接受到的太阳能量越来越少,使大气和海洋越来越冷,冰期有一个长期的冷积累过程。

  由于内核相对地壳地幔的差异旋转,太阳辐射达到最大值时使核幔角动量交换达到高峰,部分旋转动能转变为热能积累在核幔边界赤道区(此处核幔速度差最大,积累的热能最多)。超级热幔柱(羽)由核幔边界赤道热区升起,在海底赤道区喷发,加热了底层海水,并引发赤道和两极之间的海洋整体热循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,消除了海洋藏冷效应的冷源,形成全球无冰温暖气候,产生晚白垩纪赤道海洋表层低温之谜(当时温度为摄氏21度,比现代低6.5度)。我们称这个过程为海洋锅炉效应。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15度,大气冷却了10~15度。这是典型的地、海、气相互作用。计算表明,一亿二千万年前形成翁通爪哇海台的海底热幔柱喷发,其释放的热量可使全球海水温度增高33度,喷发过程经历了几百万年时间。有证据表明,在古新世末不到6000年的时间内大洋底层水增温4度以上。海底火山活动引发的深海热对流在全球气候变化中的作用不容忽视[2-8]

http://guancha.gmw.cn/content/2007-12/25/content_715516_2.htm 

http://blog.sciencenet.cn/blog-2277-736985.html

http://blog.sciencenet.cn/blog-2277-521283.html



海底藏冷效应和海洋锅炉效应

 

研究结论:南极冰川融化对海平面上升的贡献不会超过7

 

如果徳雷克海峡没有闭合,第四纪大冰期就不会结束。

第四纪冰川变化以北半球为主,南极冰川融化对海平面上升的贡献不会超过7米。

本次间冰期的高峰已经过去(见图1),未来的最大风险不是全球变暖,而是冰期的到来。历史记录表明,在10万年为周期的冰期与间冰期转换中,间冰期为1万年,冰期为9万年。我们正处于由间冰期向冰期过度的转换时期。

地球气候的长期历史表明,冷暖周期交替变化,是不以人类意志为转移的。人们可能对70年代初出现过的气候“变冷说”记忆犹新。

1971年丹斯加德(Dansgaard)等人发表的格陵兰冰芯氧同位素谱分析成果表明,地球气候有10万年轨道周期变化,其9万年为冷期,1万年为暖期。按此规律,目前气候的暖期已接近尾声,气候“变冷说”一度成为主流。日本气象厅朝仓正在197333日《东洋经济周刊》撰文预言,地球将于21世纪进入“第四小冰期”。美国威斯康辛大学环境研究所布赖森(Bryson)认为,地球目前正在非常缓慢地进入另一个大冰河期。当时的“变暖说”以大气热污染为依据,代表人物有前苏联列宁格勒地球物理观象总台布迪柯、列宁格勒大学施涅特尼柯夫和美国国家海洋和大气管理局环境保护厅彼得森。他们的理论现在变为主流。

媒体多次披露,对于气候冷暖变迁这一全球重大问题的预测,科学界可谓出尔反尔。20世纪70年代,一批欧美的著名学者曾聚会于美国布朗大学,专门召开了一次“当前的间冰期何时结束和如何结束”的研讨会。学者们举出实例证明,目前的地球气温已经在开始下降,从暖到冷的变化很快,可以不足500年,如果人类不加以干涉,当前的暖期将会较快结束,可以预期不出几千年,也许只有几百年,全球变冷以及相应的环境变迁就会来临。出于对所面临威胁的忧虑,会议的两位发起者甚至还向当时的美国总统尼克松写信发出警报。这种“冰期将临”的观点一直持续了20年。直到了20世纪90年代,全球气温不仅没有下降,反而迅速上升,温室效应与全球气候变暖才成为国际社会的热点[1-10]

现在轮到“变暖说”犯错误的时候了。

http://blog.sciencenet.cn/blog-2277-723744.html

冰川融化和海平面上升受到多重自然条件的约束,如果徳雷克海峡没有被封闭,南极冰川就不会有显著的变化,完全融化只是现代气象学家的主观愿望,是全球变暖的错误推论。

在全球变暖的高峰过后,我们将面临21世纪次小冰期:

2016-2017年将发生拉尼娜事件,给全球带来严重的低温冻害。

目前,太阳正处在第24活动周的高峰年,其活动理应处于最活跃的时期。然而,太阳活动强度明显不及上一个活动周,甚至出现太阳表面连黑子都没有了这种罕见现象。这个太阳活动高峰年百年来最弱。有科学家指出,如果这种情况继续发展下去,太阳将沉入超长的最低活动期。目前科学界仍然在探讨太阳黑子周期是如何影响全球气温的。有人认为地球将进入所谓的小冰河期,有人称会在2020年之前,有人则称会更早。

杨冬红等(2011, 2013)指出,近20年的研究发现,潮汐极大期、地震火山活动频发期、太阳黑子超长极小期和全球低温有很好的对应关系。6次时间的一一对应表明其相关性和处于同一激发机制(见表2)。

 

太阳活动、火山喷发、强潮汐和低温期的对应关系

太阳黑子延长极小期

时间(年)

坏天

时代

潮汐极大年时间

火山活跃时间

全球

气温

欧特

1040-1080

1010-1110

1062


低温

沃尔夫

1280-1350

1165-1360

1264

1275-1300

小冰期

史玻勒

 

1450-1550

 

1420-1525

 

1425

 

1440-1460

1470-1490

小冰期

 

蒙德

1640-1720

1600-1725

1629

1640-1680

小冰期

道尔顿

1790-1830

1790-1915

1770

1810-1820

小冰期

 21世纪

 2007-??

 1997-??

 1974

1980-??

次小冰期

 注:??表示终结时间待定。

 

多因素叠加是小冰期发生的根本原因。导致15-17世纪小冰期和2020年“次小冰期”出现的原因有五:

其一、处于太阳黑子超长极小期

杨冬红等(2013)指出,国外资料显示,太阳将进入不寻常且时间较长的“超级安静模式”,大约从2020年开始,太阳黑子活动或许会消失几年甚至几十年。太阳黑子活动或许将进入“冬眠”,这种情况自17世纪以来从未出现。目前处于200年气候周期的变冷初期。

其二、处于全球强震频发时期

郭增建(2002)指出,海洋及其周边地区的巨震产生海啸,可使海洋深处冷水迁到海面,使水面降温,冷水吸收较多的二氧化碳,从而使地球降温近20年。20世纪80年代以后的气温上升与人类活动使二氧化碳排放量增加有关,同时这一时期也没有发生巨大的海震。巨震指赤道两侧各40°范围内的Ms 8.5级和大于Ms 8.5级的海震。郭增建等人指出,9级和9级以上地震与北半球和我国的气温有很好的相关性。20世纪4场最强的特大地震在很短的时间内都发生在环太平洋地震带的沿海地区:1952年堪察加地震,1957年阿拉斯加阿留申群岛地震,1960年智利地震,1964年阿拉斯加威廉王子海峡地震,与50-70年代低温期相对应。

其三、处于全球火山活动频繁时期

杨冬红等(2013)指出,现代火山活动有明显致冷的记录:小冰期对应强火山活动,小气候最适期对应弱火山活动。因为火山灰和二氧化硫等火山喷发物到达平流层后,较小的气溶胶可在数月内传播到全球,并可在平流层内持续漂浮1~3年,使太阳直接辐射减弱,造成大气降温。最新发表的研究报告显示火山喷发导致了小冰期的到来。研究报告称,1275年到1300年之间,热带地区经历过四次大规模火山喷发,喷发出来的大量硫酸盐颗粒进入大气层上空反射了太阳辐射,使地球气温降低;1430年到1450年,也发生了一轮大规模火山喷发,与地震活动一样,火山喷发与气候冷暖变化导致的冰盖消长有关(见表2)。

其四、地球轨道周期

任振球(1997)指出,木星、土星、天王星和海王星使地球冬至时的公转半径发生相当稳定的准周期变化,与全球尤其北半球气温变化的间隔60年振动相一致。在20世纪初的低温期和60~70年代相对偏冷期,当时(19011960年)地球冬至时的公转半径分别延长了94(相当于日地距离的0.6%)57万公里;在30-40年代和80年代后的暖期,地球冬至时的公转半径(19402000年)分别缩短了7644万公里。2000-2020年地球冬至时的公转半径由极小值变为极大值,他推测2020年前后全球气候将进入相对冷期。

韩延本(2003)指出,分析了美国宇航局公布的起自19世纪中期的全球及南北半球的温度异常变化资料,得到它们存在约60年的准周期性波动的初步结果。该周期是它们的中周期波动的主要周期分量之一,它对调制温度的总体变化趋势可起到重要作用。分析表明,该周期分量是时变的,周期长度在19世纪略超过60年,之后缓慢变短,到20世纪后期月在55年至60年间。所谓人类活动造成的温室效应的加剧似乎并未有打乱这一周其分量的存在。这一周期与拉马德雷周期相对应。

其五、处于强潮汐活动时期

Keeling2000)指出,强潮汐把海洋深处的冷水带到海面,使全球气候变冷,形成的全球气候波动周期大约为1800年。在十五世纪小冰期时期,潮汐强度为最大值,以后开始减弱,直到3100年潮汐强度又将达到最大值。潮汐调温效应使地球的温暖期从小冰期末期一直持续到二十四世纪,而后随着潮汐的增强,地球的气候将逐渐变冷。今后400年处于变暖高峰,下次小冰期将在3107年出现[11]


3   强潮汐1800年周期(据季林,2000

 

杨冬红等(2011)指出,潮汐高低潮还有200年左右的明显周期变化。其中,1425年、1629年两次峰值对应小冰期时期,1770年的峰值对应18世纪的低温,1974年的峰值对应20世纪70年代的气候变冷。特别是潮汐54-56年周期(与太平洋十年涛动的50-70年周期对应),在全球气候变化中有非常明显的作用。

杨冬红等(2014)指出,潮汐变化还有月亮赤纬角最大值变化18.6年周期,与气候变化18.6年周期对应。杨冬红等(20082014)指出,1998年最热年记录与1995-1997年的月亮赤纬角最小值时期有关,此后16年气候变暖间断的原因之一是2005-2007年为月亮赤纬角最大值时期,2014-2016年月亮赤纬角最小值时期变暖增强,2023-2025年月亮赤纬角最大值时期变冷达到高潮。2014年和2015年最热年新纪录证实了理论预测的可靠性。

根据以往记录,21世纪太阳黑子超长极小期过程还将持续30年以上。2000-2030年为拉马德雷冷位相,百年极寒有可能发生,但规模较小,变冷规模要小于道尔顿极小期(见表2)。我们称之为“次小冰期”。综合因素表明,2020年气候变冷将达到高潮。

http://blog.sciencenet.cn/blog-2277-996887.html

 

     公转轨道偏心率控制行星大气密度和温度:金星的大气为什么比地球更浓密?

       

      火星(英语:Mars;拉丁语:Martis;天文符号:),是离太阳第四近的行星,也是太阳系中仅次于水星的第二小的行星,为太阳系里四颗类地行星之一。

      火星大气以二氧化碳为主,既稀薄又寒冷,遍布撞击坑、峡谷、沙丘和砾石,没有稳定的液态水,南半球是古老、充满撞击坑的高地,北半球则是较年轻的低地平原。火星没有来自中心的全球性的磁场

      火星的大气密度只有地球的大约1%,非常干燥,温度低,表面平均温度零下55,水和二氧化碳易冻结。在火星的早期,它与地球十分相似。像地球一样,火星上几乎所有的二氧化碳都被转化为含碳的岩石。但由于缺少地球的板块运动,火星无法使二氧化碳再次循环到它的大气中,从而无法产生意义重大的温室效应。因此,即使把它拉到与地球距太阳同等距离的位置,火星表面的温度仍比地球上的冷得多。

      火星的那层薄薄的大气主要是由遗留下的二氧化碳(95.3%)加上氮气(2.7%)、氩气(1.6%)和微量的氧气(0.15%)和水汽(0.03%)组成的。火星表面的平均大气压强仅为大约7毫巴(比地球上的1%还小),但它随着高度的变化而变化,在盆地的最深处可高达9毫巴,而在奥林帕斯山脉的顶端却只有1毫巴。但是它也足以支持偶尔整月席卷整颗行星的飓风和大风暴。火星那层薄薄的大气层虽然也能制造温室效应,但那些仅能提高其表面5的温度,比我们所知道的金星和地球的少得多。

      金星(Venus)是太阳系中八大行星之一,按离太阳由近及远的次序,是第二颗,是离地球最近的行星之一(火星有时候会更近)。金星是一颗与地球相似的类地行星,常被称为地球的姊妹星。其表面的平均温度高达735K462°C),是太阳系中最热的行星。

       金星被一层高反射、不透明的硫酸云覆盖着,阻挡了来自太空中,可能抵达表面的可见光。它在过去可能拥有海洋,并且外观与地球极为相似,但是随着失控的温室效应导致温度上升而全部蒸发掉了。水最有可能因为缺乏行星磁场而受到光致蜕变分解成氢和氧,而自由氢一直被太阳风大气逃逸,扫进星际空间。金星表面是干燥的荒漠景观,点缀着定期被火山刷新的岩石。2020915日,科学家在金星大气层中侦测到磷化氢存在,这可能是地外生命存在的迹象。

      金星有浓密的大气。金星的大气主要由二氧化碳组成,并含有少量的氮气。金星的大气压强非常大,为地球的92倍,相当于地球海洋中1千米深度时的压强。大量二氧化碳的存在使得温室效应在金星上大规模地进行着。如果没有这样的温室效应温度会下降400。在近赤道的低地,金星的表面极限温度可高达500

      金星表面的温度很高,是因为金星上强烈的温室效应,温室效应是指透射阳光的密闭空间由于与外界缺乏热交换而形成的保温效应。金星上的温室效应强得令人瞠目结舌,原因在于金星的大气密度是地球大气的100倍,且大气97%以上是保温气体”——二氧化碳;同时,金星大气中还有一层厚达2030千米的由浓硫酸组成的浓云。二氧化碳和浓云只许太阳光通过,却不让热量透过云层散发到宇宙空间。被封闭起来的太阳辐射使金星表面变得越来越热。温室效应使金星表面温度高达465485,且基本上没有地区、季节、昼夜的差别。它还造成金星上的气压很高,约为地球的90倍。浓厚的金星云层使金星上的白昼朦胧不清,天空是橙黄色的。云层顶端有强风,大约每小时350千米,但表面风速却很慢,每小时几千米不到。十分有趣的是,金星上空会像地球上空一样,出现闪电和雷暴。

       金星大气层主要为二氧化碳,占约96%,以及氮3%在高度5070千米的上空,悬浮着浓密的厚云,把大气分割为上下两层。云为浓硫酸液滴组成,其中还掺杂着硫粒子,所以呈现黄色。

      星也没有来自中心的全球性的磁场,在金星上会有很强烈的磁场,但是这种磁场还要比地球的弱一些。因为这种磁场的产生是由于电离子与太阳风之间出现了相互作用所导致。与地球上的磁场完全不同,地球上的磁场能够保护大气层,而金星上的磁场无法去保护大气层,也不能抵抗宇宙中的辐射。

      太阳风,非常具有侵蚀性。它们主要由带正电的质子和带负电的电子组成,会以极高的速度从太阳表面冲出。当这些带电粒子在靠近行星时会产生电场,电场会加速带电粒子离开大气,使得行星难以持大气的存在。火星就是因为这样的过程而失去了原有的大气。

  我们的地球之所以没有迎来与火星一样的结局,是因为它拥有一个旋转的铁核可以产生磁场。地球的磁层就像一个屏障,它能让太阳风发生偏转,阻止太阳风对大气层的侵蚀,从而保护地球生命免受紫外线辐射的伤害。

 

      火星大气去哪儿了?

 

      科学家们在火星表面或一定深度都没有发现充足的含碳矿物,这些证据否认了人们曾经的猜想——火星上曾经浓厚的二氧化碳被埋藏到地下。那么,会不会有一种可能:火星大气逃逸、消散到太空中,可能是火星气候变化的主要原因。马文号就通过测量火星高层大气与太阳和太阳风的相互作用,研究出了火星大气的逃逸过程。

      原来,由于火星没有全球性的磁场,太阳风可以直接抵达火星,将火星高层大气中的带电离子驱赶走。而我们所身处的地球,由于有磁场的保护,带电的太阳风离子就无法直接抵达地球大气层。这也致使太阳风离子对地球和火星上的大气产生了不同的影响。马文号测量了火星大气中离子的总逃逸速率及其速率变化,探测结果发现,过去40亿年中,火星大气粒子逃逸对气候变迁有巨大影响。

      据探测,火星大气的逃逸主要发生在三个区域:一是火星面向太阳风一侧,该侧火星大气被太阳风电离后到火星阴面并逃逸出大气层,占大气逃逸总量的75%;二是极区上空,占火星大气逃逸总量约25%;三是绕火星的延展云层,仅占火星大气逃逸总量的很小一部分。不仅仅是太阳风,不时出现的太阳风暴对火星大气的影响更为显著。尤其是在太阳系形成早期,太阳风暴出现的几率更为频繁。当太阳风暴击中火星大气层时,大气逃逸速率将提高约1020%。平均每秒约有100克的火星大气被吹走,相当于两个鸡蛋的质量。

      目前,火星上仍残存着稀薄的大气层。

 

      行星轨道偏心率大才是行星大气丢失的主要原因

 

      问题来了:金星也没有全球性的磁场。在金星上会有很强烈的磁场,但是这种磁场还要比地球的弱一些。因为这种磁场的产生是由于电离子与太阳风之间出现了相互作用所导致。与地球上的磁场完全不同,地球上的磁场能够保护大气层,而金星上的磁场无法去保护大气层,也不能抵抗宇宙中的辐射。那么,谁保护了金星的浓密大气?


     彗星的彗尾是怎样形成呢?

 

17世纪时,牛顿认为彗尾是由于光的斥力作用,即太阳辐射压力。后来发现太阳风是彗星产生彗尾的主要作用力。所谓太阳风就是太阳向外喷射出的高能粒子流,太阳风的平均速度是每秒300500千米,对彗星造成强大的推斥力。太阳辐射及太阳风就是促成彗尾形成的两股原动力,所以彗尾要在彗星接近太阳时才出现,彗尾的方向永远背向太阳。当轨道偏心率极大的彗星向太阳靠近时,太阳风和太阳辐射将彗发物质吹走,形成背光的彗尾;当彗星向离开太阳的方向运动时,彗发和彗尾收缩。彗星每靠近太阳一次,就失掉相当大数量的质量,相当于彗星质量的0.1%1%。显而易见,短周期彗星的生命时期是短暂的。彗核表面物质在接近太阳时不断转变为彗发和彗尾,被太阳风吹散到太空。

 

行星气尾和大气丢失

 

      类比于彗星质量的消失,我们可以模拟出行星大气的消失过程。当轨道偏心率较大的行星向太阳靠近时,太阳风和太阳辐射将一部分大气物质吹走,形成背光的气尾;当行星向离开太阳的方向运动时,气尾收缩。行星每靠近太阳一次,就失掉相当大数量的大气质量。这是近日行星原始大气完全丧失殆尽的原因,也是水星和火星的大气非常稀薄的原因。因为在近日行星中,水星与火星的轨道偏心率最大,分别为0.2060.093;而地球的偏心率较小,为0.017,金星的偏心率更小,为0.007。显然,近日行星的大气密度与其轨道偏心率成反比。类比与彗星的大气散失,就可以解释为什么近日行星中轨道偏心率大的行星大气散失的比较多,大气非常稀薄。

http://blog.sciencenet.cn/blog-2277-696517.html

 

     行星公转轨道偏心率控制行星大气密度和温度

 

      我们在2006年撰文指出, 大气层对行星具有保温作用。当轨道偏心率较大的行星向太阳靠近时,太阳风和太阳辐射将一部分大气物质吹走,形成背光的气尾;当行星向远离太阳的方向运动时,气尾收缩。行星每靠近太阳一次,就失掉相当多的大气质量。

      近日行星中,水星与火星的轨道偏心率最大,分别为0.2060.093,地球的偏心率为0.017,金星的偏心率为0.007。近日行星的大气密度与其轨道偏心率成反比,因此,近日行星中轨道偏心率大的行星大气散失比较多,大气非常稀薄。大气层可以保持地表的气温,大气的流失降低地表气温,这是10万年冰期周期与地球轨道偏心率10万年变化周期对应的原因,地球轨道偏心率变化范围为0.017~0.067,在偏心率最大时对应冰期的出现。强磁场对大气也有保护作用。

http://blog.sciencenet.cn/blog-2277-436350.html

       根据米兰科维奇循环的天文冰期理论:火星目前处于轨道偏心率较大的大冰期时期,地球处于轨道偏心率较小的间冰期时期,金星处于轨道偏心最小的极热期时期。

       轨道偏心率较大的行星向太阳靠近时产生的大气丢失,是冰期产生的根本原因。大气稀薄也是与冰期伴随的生物灭绝的原因。而地球公转轨道偏心率变化周期为10万年和41.3万年等,于0.0050.058之间变化(见米兰科维奇循环)

      在八大行星中金星的轨道最接近圆形,偏心率最小,仅为0.006811。火星和地球10万年后也有可能变为金星目前状态,目前没有成为金星目前状态的可能。

      火星的轨道偏心率最大,为0.093,地球的偏心率为0.017,金星的偏心率为0.007。在10万年的周期内,地球既不能变为金星,也不能变为火星,地球上的生命也不会灭绝。

       科学的缺席和科普的误读,必须得到及时的纠正。

 

       行星的温室效应受控于行星公转轨道偏心率

 

 我们在2006年发现,水星、金星、地球、火星的轨道偏心率分别为0.2060.0070.0170.093,大气浓度分别为极其稀薄、浓密、标准、稀薄。两者成反比的原因是,较大的轨道偏心率使行星在接近太阳时像彗星一样丢失一部分大气。地球轨道偏心率在冰期时增大为0.0607,使大气浓度和二氧化碳浓度变低,降低了对地球表面的保温作用,导致10万年周期致冷作用的增强。由于地球轨道偏心率10万年周期项振幅不到近日点进动2万年周期项振幅的一半,其引起10万年冰期周期的作用受到质疑。大气浓度变化能增强10万年周期作用,给出10万年冰期周期的合理解释。

目前金星大气中浓密的温室气体,将在其下一次公转轨道偏心率最大值时期大部分消失。

 

米兰科维奇循环的天文冰期理论的最新解释

 

1994年周尚哲提出,冰期天文理论的一些结论与实际并不完全符合,其中最明显的两个问题是:

其一,根据冰期天文理论,地球南北两半球都将以23000a(近日点相对春分点的周期)为周期交替发生冰期,这就是冰期天文理论关于南北两半球交替发生冰期的学说。但是,到目前为止,所获得的地质纪录却证明南北半球的冰期是同步进行的[9]

其二,冰期天文理论认为,冰期发生在地球轨道偏心率e的高值时期。实际上,e的高值却对应第四纪的间冰期[2,3]

最新质疑是,由于地球轨道偏心率10万年周期项振幅不到近日点进动2万年周期项振幅的一半,引起10万年冰期周期的作用受到质疑。

德雷克通道的打通可能形成了环极流,并隔断了对南极洲的向极热输送,因而产生了冰架和冷的底水。对第三纪早期普遍变冷起作用的明显构造事件是巴拿马地峡的封闭,因而限制了大西洋与太平洋之间赤道水体的交换。同理,德雷克海峡被扩展的南极冰盖封闭,导致气候上隔离的环极西风漂流带的消失,加强赤道热流向两极的输送,使扩展冰盖趋于消失,是南极冰盖不能扩展成南半球大冰川的一个重要原因。

地球轨道偏心率在冰期时增大为0.0607,使大气浓度和二氧化碳浓度变低,降低了对地球表面的保温作用,导致10万年周期致冷作用的增强。

 

  

参考文献

 

1Frakes, L. A., Climates throughout geologic time. Elsevier Scientific Publishing Company[M], Amsterdam—Oxford—New York, 1979. 182, 192, 200, 223, 315.

2.杨学祥。太平洋环流速度减慢的原因[J]。世界地质,2003224):380-384

3.杨学祥。厄尔尼诺事件产生的原因与验证[J]。自然杂志,2004263):151155

4Van Andel T H, Heath G R, Moore T C. Cenozoic history and paleooceanography of the central equatorial Pacific Ocean[J]. Geol. Soc. Am.,Mem., 1975, 143: 134

5.杨冬红,杨学祥。澳大利亚夏季大雪与南极海冰三个气候开关。地球物理学进展。2007225):1680-1685

6. 杨冬红,杨学祥全球气候变化的成因初探地球物理学进展. 2013, 28(4): 1666-1677.

7. 杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934.

8. 杨学祥地球反对称构造与气候变化的关系自然杂志2001233):135~139

9. 周尚哲冰期天文理论研究中的几个问题冰川冻土. 1994, 16(1):85~92

10. 杨学祥地壳均衡与海平面变化地球科学进展. 1992, 7(5): 22-29.

11. Charles D. Keeling and Timothy P. Whorf. The 1800-year oceanic tidal cycle: A possible cause of rapid climate change [J]. PNAS, 2000, 97(8): 3814-3819

12. 杨冬红,杨学祥,刘财。20041226日印尼地震海啸与全球低温[J]。地球物理学进展。2006213):10231027

Yang Donghong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 213: 10231027.

http://blog.sciencenet.cn/blog-2277-999210.html 

https://blog.sciencenet.cn/blog-2277-1136248.html




https://wap.sciencenet.cn/blog-2277-1317305.html

上一篇:厄尔尼诺指数进入上升区间:2021年12月19日晚报
下一篇:厄尔尼诺指数进入上升区间:2021年12月20日早报
收藏 IP: 103.57.12.*| 热度|

2 杨正瓴 周少祥

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-29 15:22

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部