Frontiers of Physics分享 http://blog.sciencenet.cn/u/dudy75

博文

诺贝尔物理学奖得主Kostya S. Novoselov_Research: 少层石墨烯中ABC到ABA堆叠的转变

已有 6952 次阅读 2018-10-24 11:47 |系统分类:论文交流

 少层石墨烯中ABC到ABA堆叠的转变


通信作者

Kostya S. Novoselov
National Graphene Institute/School of Physics and Astronomy,
University of Manchester, Oxford Road, Manchester, M13 9PL, UK 


研究背景和亮点

近期,对少层石墨烯(FLG)可变电子特性有了深入的研究进展。这些特性由局部原子排列定义,FLG中最自然的层排列是ABABernal结构)堆叠[1],也称为正常或六角形结构;但亚稳态ABC(菱形)堆叠也可能发生,虽然概率低仅有5-15[2-4]但是在少层石墨烯(FLG)中可以相对容易地实现[5]。当两种类型的堆叠发生在同一样品中时,会导致畴壁(DW)面内异质结构。堆叠顺序和原子的相对位置强烈影响FLG的能带结构和电子性质。已经证明ABA TLG(三层石墨烯)是具有电可调带重叠的半金属[6]ABC TLG是具有电可调带隙的半导体[7-9]

BLG(双层石墨烯)中的DW因其迷人的电学特性[10-12]和光学特性[13]成为值得深入研究的主题。然而,局部堆叠的精确表征以及以可控方式修改堆叠布置和DW的可能性仍然是一个挑战,ABCABA过渡期间原子重新排列的确切机制尚未完全理解。

最近,Kostya S. Novoselov及其合作者提出了两种方法(Joule heating & Laser pulse excitation)来证明FLGABC堆叠可以可控并局部地转变为ABA堆叠[14]第一种方法通过引入焦耳热实现,并且该转变的特征在于亚微米空间分辨率的2D峰拉曼光谱。转换在一个小区域开始,然后DW可控地移动,直到整个设备成为ABA堆叠。在第二种方法中,通过用一系列790nm波长的激光脉冲照亮ABC区域来实现转换,在衍射和暗场成像模式下通过透射电子显微镜观察转变。此外,使用该方法,DW在暗场成像模式中以纳米级空间分辨率可视化。

范德瓦尔斯异质结构由于提供了多种可以自由选择二维材料及控制其在堆叠的顺序来调控其自身性质,已获得深入研究。层的精确排列以及层内原子的精确排列对于器件的性质都是重要的。然而,很难控制和表征这种异质结构中的原子和层的确切位置,特别是沿垂直维度。在另一项研究中[15]Kostya S. Novoselov及其合作者通过在一个稍微简化的二维单层晶体系统上模拟和执行具有会聚和发散波前的各种CBED方案来更详细研究了会聚束电子衍射(CBED, convergent beam electron diffraction)的实验验证。


参考文献

1.  J. D. Bernal, The structure of graphite, Proc. R. Soc. Lond. Ser. A 106, 749 (1924)

2.  F. Laves and Y. Baskin, On the formation of the rhombohedral graphite modification, Z. Kristallogr. Cryst. Mater. 107(5–6), 337 (1956)

3.  H. A. Wilhelm, B. Croset, and G. Medjahdi, Proportion and dispersion of rhombohedral sequences in the hexagonal structure of graphite powders, Carbon 45(12), 2356 (2007)

4.  C. H. Lui, Z. Q. Li, Z. Y. Chen, P. V. Klimov, L. E. Brus, and T. F. Heinz, Imaging stacking order in few-layer graphene, Nano Lett. 11(1), 164 (2011)

5.  A. Torche, F. Mauri, J. C. Charlier, and M. Calandra, First-principles determination of the Raman fingerprint of rhombohedral graphite, Phys. Rev. Mater. 1(4), 041001 (2017)

6.  M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4(6), 383 (2009)

7.  M. Aoki and H. Amawashi, Dependence of band structures on stacking and field in layered graphene, Solid State Commun. 142(3), 123 (2007)

8.  C. H. Lui, Z. Q. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys. 7(12), 944 (2011)

9.  W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S. B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, and C. N. Lau, Stacking-dependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7(12), 948 (2011)

10.  L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)

11.  I. Martin, Y. M. Blanter, and A. F. Morpurgo, Topological confinement in bilayer graphene, Phys. Rev. Lett. 100(3), 036804 (2008)

12.  G. W. Semenoff, V. Semenoff, and F. Zhou, Domain walls in gapped graphene, Phys. Rev. Lett. 101(8), 087204 (2008)

13.  L. L. Jiang, Z. Shi, B. Zeng, S. Wang, J.H. Kang, T. Joshi, C. Jin, L. Ju, J. Kim, T. Lyu, Y. R. Shen, M. Crommie, H. J. Gao, and F. Wang, Soliton-dependent plasmon reflection at bilayer graphene domain walls, Nat. Mater. 15(8), 840 (2016)

14.  T. Latychevskaia, S.-K. Son, Y. Yang, D. Chancellor, M. Brown, S. Ozdemir, I. Madan, G. Berruto, F. Carbone, A. Mishchenko, and K. S. Novoselov,Stacking transition in rhombohedral graphite,Front. Phys. 14(1), 13608 (2019)

15. T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, and K. S. Novoselov, Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals, Front. Phys. 14(1), 13606 (2019)

文献链接

Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, and Kostya S. Novoselov, Stacking transition in rhombohedral graphite, Front. Phys. 14(1), 13608 (2019) 

T. Latychevskaia, C. R. Woods, Yi Bo Wang, M. Holwill, E. Prestat, S. J. Haigh, and K. S. Novoselov, Convergent and divergent beam electron holography and reconstruction of adsorbates on free-standing two-dimensional crystals, Front. Phys. 14(1), 13606 (2019)

相关文章和专题链接

Yue Liu, Hao Zhang, Yu Zhou, Feirong Ran, Weihao Zhao, Lin Wang, Chengjie Pei, Jindong Zhang, Xiao Huang, and Hai Li, Probing interlayer interactions in WSe2-graphene heterostructures by ultralow frequency Raman spectroscopyFront. Phys. 14(1), 13607 (2019)

Special Topic: Graphene and other Two-Dimensional Materials 
(Eds. Daria Andreeva, Wencai Ren, Guangcun Shan & Kostya Novoselov) 

Special Topic: Inorganic Two-Dimensional Nanomaterials
(Eds. Changzheng Wu & Xiaojun Wu)



https://wap.sciencenet.cn/blog-115136-1142552.html

上一篇:Research: FF超导体上的半导体纳米线中的马约拉纳费米子
下一篇:Research: 利用飞行原子操控腔光机械系统的纠缠和压缩性质
收藏 IP: 36.102.208.*| 热度|

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

全部作者的精选博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2022-12-4 03:19

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部